MANAGEMENT CENTER INNSBRUCK

GENERAL MANAGEMENT
EXECUTIVE MBA 2007

MASTER THESIS

„Konzeption und Realisierung eines branchenübergreifenden Produktklassifikationssystems für das Bauwesen unter Nutzung der produktspezifischen Fachkompetenz der Baustoffindustrie“

Eingereicht bei: Univ.Prof. Dr. Mont. Siegfried Augustin
Clemensstrasse 78
D-80796 München
+49/89 307 64 151
info@profaugustin.com

Eingereicht von: Otto Handle
Eidesstattliche Erklärung

Die Arbeit wurde bisher weder in gleicher noch in ähnlicher Form einer anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

... ..
Ort, Datum Unterschrift
Inhaltsangabe:

1. **Einführung** ... 6
 1.1. Grundüberlegungen .. 6
 1.1.1. Bisherige Situation .. 6
 1.1.2. Verbesserungspotentiale ... 7
 1.1.3. Handlungsmotivation ... 8
 1.1.4. Gründe für eine eigenständige Lösung .. 9
 1.2. Ziele der Master Thesis ... 10
 1.3. Leitfragen ... 10
 1.4. Vorgangsweise .. 11
 1.5. Kurze Darstellung des Unternehmens .. 12

2. **Grundlagen** .. 13
 2.1. Ermittlung organisatorischer Rahmenbedingungen ... 13
 2.1.1. Situation der Baustoffindustrie ... 13
 2.1.2. Situation des Baustoffhandels ... 14
 2.1.3. Streckengeschäft im Bauwesen .. 16
 2.1.4. Zentralisierte Beschaffungslösungen im Bereich der Bauindustrie .. 17
 2.1.5. Bedenken von Baustoffhandel und -Industrie ... 18
 2.2. Allgemeine Grundbegriffe .. 21
 2.2.1. Produktklassifikation – allgemeines Umfeld ... 22
 2.2.2. Überlieferte Ordnungssysteme .. 23
 2.2.3. Zugriffssystematik auf unstrukturierte Daten – Übersicht ... 26
 2.2.4. Produktklassifikationssysteme .. 27
 2.3. Ermittlung und Bewertung bestehender Lösungsansätze .. 32
 2.3.1. UN/SPSC ... 32
 2.3.2. eCl@ss .. 33
 2.3.3. ETIM .. 35
 2.3.4. bau: class .. 35
 2.3.5. ProfiCl@ss ... 37
2.3.6. CCG Standard Warenklassifikation .. 39
2.3.7. Heinze Bau-Warengruppenschlüssel ... 39
2.3.8. Auer Eurostamm .. 41
2.3.9. Österreichische Baustoffliste ... 42
2.3.10. Baustoffliste ÖA ... 42
2.4. Ermittlung von Rahmenbedingungen des e-Business 42
2.4.1. Nutzungsgrad von e-Business seit 2002 43
2.4.2. Aktueller Nutzungsgrad von e-Business 2007 45
2.5. Ermittlung technischer Rahmenbedingungen 47

3. Bewertung .. 49
3.1. rechtliche Rahmenbedingungen ... 49
3.1.1. Bauordnungen .. 49
3.1.2. CE Kennzeichnung ... 50
3.1.3. Baustoffliste ÖA ... 51
3.1.4. Einzelzulassungen .. 52
3.1.5. Österreichische und EU-harmonisierte Normung 52
3.2. Bewertung bestehender Klassifikationssysteme 52

4. Konzeption des neuen Systems .. 54
4.1. Beschreibung eines idealen Systems ... 54
4.1.1. Allgemeine Systemgestaltung .. 54
4.1.2. Datenbasis, Zuordnung der Klassen und Merkmale 55
4.1.3. Systemintegration mit Produktklassifikation 56
4.1.4. Anwendungen ... 58
4.1.5. Mono- oder polyhierarchisches System 63
4.2. Anwendungsarchitektur .. 64
4.2.1. Strukturdefinition der Produktklassifikation 64
4.2.2. Klassierungsvorgang ... 66
4.2.3. Mapping verschiedener Klassifikationssysteme 68
4.2.4. Prozessbeschreibung Produktklassifikation Einbindung der Fachkompetenz der Baustoffindustrie 70
4.2.5. Kontinuierlicher Verbesserungsprozess als Basis der Gestaltung ... 72

5. Realisierung .. 74
 5.1. Technische Umsetzung ... 74
 5.2. Gestaltung der inhaltlichen Struktur ... 74
 5.3. Meinungsbildung bei den Marktteilnehmern .. 76
 5.4. Organisatorische und wirtschaftliche Umsetzung .. 77
 5.5. Schulung und Weiterentwicklung ... 78

6. Allgemeingültigkeit ... 78
 6.1. Nutzung der gewonnenen Erkenntnisse in benachbarten Wirtschaftsräumen ... 78
 6.2. Übertragbarkeit auf andere Branchen .. 80

7. Zusammenfassung, Ausblick .. 81

8. Quellenverzeichnis .. 82
 8.1. Klassifikation allgemein technische und wissenschaftliche Grundlagen ... 82
 8.2. Standardisierung im e-Business allgemein ... 83
 8.3. Infos zu themenbezogenen Lösungsansätzen .. 85
 8.4. Gesetzliche und wirtschaftliche Rahmenbedingungen .. 86

Anhang 1: Übereinstimmungserklärung Baustoffliste ÖA .. 89

Anhang 2: Technische Infrastruktur .. 90

Anhang 3: Überregionale Aktivitäten der Industrie .. 91

Anhang 4: Arbeitskreis Baustoffklassifikation ... 92

Anhang 5: Expertengespräche und e-Mail Kommunikation ... 93
1. Einführung

1.1. Grundüberlegungen

Mit dem offenen Industriedatenpool steht Österreichs Bauwirtschaft eine einheitliche Quelle für Artikelstamm- und Produktdaten zur Verfügung. Diese ist zunehmend in die Vertriebsprozesse des Baustoffhandels und der Baustoffindustrie eingebunden.

Die im Industriedatenpool verfügbaren Daten sind multimedia nutzbar und enthalten üblicherweise alle wesentlichen Vertriebsinformationen des jeweiligen Produktes.

Wie in anderen Branchen auch, besteht inzwischen im Baustoffbereich eine große Vielfalt in den Produkt- und Leistungsprogrammen der einzelnen Anbieter. Mehrere 100.000 Artikel teilweise ähnlichen Anwendungszweckes machen die marken neutrale Ansprache der einzelnen Baustoffe inzwischen beinahe unmöglich.

Genau diese Produktneutralität ist jedoch im Bereich öffentlicher Ausschreibungen und in vielen anderen Bereichen ein wesentlicher, zugleich aber schwer umsetzbarer Faktor.

Es stellt sich somit die Frage, inwieweit es möglich und sinnvoll ist, ergänzend zu bestehenden Lösungen eine produktneutrale Klassifikationsstruktur im Bereich der Baustoffe einzuführen, wie dies in anderen Branchen (Elektroindustrie, Automobilzulieferer, Chemische Industrie etc.) bereits seit langem üblich ist.

1.1.1. Bisherige Situation

In 20 Jahren wirtschaftlicher Nutzung von EDV-Systemen in der Baubranche hat sich eine Vielzahl von unterschiedlichen Ordnungssystemen für Baustoffe herausgebildet. Jedes dieser Ordnungssysteme ist prozessbezogen definiert, mit allen anderen inkompatibel und bar jeder Allgemeingültigkeit.

Beispiele für derartige Ordnungssysteme:

- Interne Warengruppenstrukturen des Baustoffhandels
- AUER Eurostamm (Warengruppenstruktur bzw. abstrakter Artikelstamm für das in Österreich marktführende Kalkulationsprogramm)
- Diverse Ordnungssysteme kommerzieller Datendienstleister (etwa HEINZE Warengruppenschlüssel in Deutschland, Schweizerische Baudokumentation, österreichische Baudatenbank und andere)

\[1 \text{[BVG2000] Bundesvergabegesetz, definiert unter anderem, dass anzuwendende Produkte zwingend produktneutral zu beschreiben sind um eine Bevorzugung bestimmter Produktanbieter zu vermeiden}\]
Daneben betreiben die Mitglieder verschiedener Interessensgruppen (Bau-
stoffhändler, Bauprodukteurzeuger etc.) unterschiedliche interne Warengrup-
penstrukturen in ihren hauseigenen EDV-Strukturen, welche üblicherweise
proprietär² und nach den hauseigenen Bedürfnissen ausgerichtet sind, wo-
durch eine Austauschbarkeit der Daten mit Dritten wirkungsvoll verhindert
wird.

Weiters bestehen einige Produktinformationssysteme für gewerbliche Planer
und Ausführende, deren Produktdaten primär über Markennamen oder Voll-
textsuchmaschinen zugänglich gemacht werden, einen strukturierten Zugang
nach gewünschten Produkteigenschaften jedoch bislang vermissen lassen
(zum Beispiel www.bdb.at, www.eurobau.com)

1.1.2. Verbesserungspotentiale

Vor dem Hintergrund einer immer stärker werdenden Prozessintegration und
der massiven Zunahme von Bauprodukten sowohl national als auch überregi-
onal im Rahmen der durch die Normenharmonisierung und Warenverkehrs-
freiheit massiv geförderten europaweiten Verfügbarkeit sämtlicher (nicht trans-
portsensiblen) Baustoffe gilt es, neben bereits erfolgreich umgesetzten ande-
ren Themabereichen des e-Business (siehe auch [Handle2006]) wie der au-
tomatisierten Artikelstammwartung den Bereich der Produktklassifikation im
Baustoffbereich umzusetzen.

Während in verschiedenen anderen Bereichen Klassifikationssysteme bereits
seit langem existieren und auch mehr oder weniger erfolgreich eingesetzt
werden (siehe 2.4.2), sind bisherige Versuche derartige Systeme als Stan-
dardklassifikation im Bauwesen umzusetzen noch erfolglos.

Die möglichen Prozessverbesserungen durch ein ergänzendes Produkttklassi-
fikationssystem sind jedoch überzeugend und weitreichend.

Neben der eigentlichen Produktauswahl, welche sich mittels eines geeigneten
Klassifikationssystems wesentlich genauer an den technischen Vorgaben von
Ausschreibung, Planung, Normung und regionaler Baustoffzulassung orientie-
ren kann, profitieren auch andere Prozess-Schritte wie die Austauschbarkeit
von Preislisten, die elektronische Beschaffung oder die Baustoff-Logistik
wesentlich von einem derartigen System.

Auch der Prozess der Kalkulation von Bauleistungen, Planung und Ausschrei-
bung und eine Reihe anderer Teilprozesse bis hin zu zentralisierten e-Procu-
rementsystemen³ der großen Bauindustrien können von einer durchgängigen
Produktklassifikation profitieren.

² proprietär: kein allgemeingültiger Standard und somit mit anderen Systemen nicht kompatibel
³ e-Procurement: zentrale Beschaffungslösung großer Organisationseinheiten, basierend auf Multilienerantenkatalogen und
leistungsfähiger Bezugsquellenoptimierung, siehe auch 2.1.4
Am Beispiel der Baustoff-Logistik sei die Prozessverbesserung kurz erklärt:

Es ist im Baustoffhandel aufgrund der absoluten technischen (und meistens auch preislichen) Vergleichbarkeit bestimmter, nach Normeigenschaften produzierter Standardprodukte (z.B. Fassadendämmplatten EPS-15 B1) üblich, in der Lagerhaltung gleichartige Produkte verschiedener Hersteller unter einer Kopfnummer zusammenzufassen und unter selbiger auch zu vertreiben. Logistisch wird dann dasjenige Produkt an den Kunden weitergegeben, wofür es gerade in der richtigen Menge und Filiale vorrätig ist. Im Bereich des Streckengeschäfts (siehe 2.1.3) wird ähnlich verfahren, wobei hier die hinterlegten Artikels jenes Lieferanten verwendet werden, der der Zielbaustelle logistisch am nächsten liegt.

1.1.3. Handlungsmotivation

Aus Sicht des Einreichers dieser Master Thesis, gleichzeitig geschäftsführender Gesellschafter des österreichischen Marktführers für Artikelstammdaten im
Baustoffbereich und für nachgelagerte Anwendungen, stellt sich das Thema Produktklassifikation im Bauwesen aufgrund dieser Prozessverbesserungspotentiale als wesentliches Thema für die nähere Zukunft dar.

Wie nachfolgend dargestellt, stellt eine durchgängig unterstützte Produktklassifikation eine unabdingbare Voraussetzung für die künftige Weiterentwicklung der Prozessintegration im Vertrieb von Baustoffen dar, und ist damit auch ein wesentliches Erfolgskriterium für die künftige Weiterentwicklung des vom Einreicher betriebenen offenen Industriedatenpools, um die bestehende marktführende Stellung abzusichern und über die österreichischen Landesgrenzen hinaus auszubauen.

1.1.4. Gründe für eine eigenständige Lösung

Im Rechercheteil unter 2.3 befindet sich deshalb ein umfangreicher Überblick über die verschiedenen, zum Zeitpunkt der Erstellung dieser Arbeit verfügbaren und potentiell für das Bauwesen interessanten Produktklassifikationssysteme.

Erst im Laufe der Rechercharbeiten und Expertengespräche stellte sich zunehmend heraus, dass die Anpassung eines aus Deutschland kommenden Systems an den österreichischen Markt weder aus unserer Sicht⁵ betriebswirtschaftlich sinnvoll, noch aus Sicht der unterschiedlichen Baustoffzulassungen machbar, noch aus Sicht von Baustoffhandel und Baustoffindustrie uneingeschränkt wünschenswert wäre.

Aus diesem Grund wurde der Themenkreis der Master Thesis um die Definition einer eigenständigen Lösung für Österreich erweitert.

⁴ STRABAG: Österreichs größter, international agierender Baukonzern, vertreten durch Dr. Johannes Schuchlenz
⁵ aus Sicht des Einreichers der Master Thesis und seines Unternehmens inndata Datentechnik GmbH
1.2. Ziele der Master Thesis

Das Ziel dieser Master Thesis ist die Erstellung eines im Detail geprüften und umsetzbaren Konzeptes für eine durchgängige Baustoffklassifikation unter Berücksichtigung der organisatorischen, wirtschaftlichen und technischen Rahmenbedingungen in Österreich, das auch zur Weiterführung in anderen europäischen Ländern geeignet ist.

Maßnahmen zur Erreichung dieser Ziele im Rahmen dieser Master Thesis:

- Ermittlung der bestehenden organisatorischen, wirtschaftlichen und technischen Rahmenbedingungen
- Entwicklung eines umsetzbaren Konzeptes für eine durchgängige Baustoffklassifikation
 - in technischer Hinsicht
 - in wirtschaftlicher und
 - in organisatorischer Hinsicht
- Bewertung auf Umsetzbarkeit
- Organisatorische Vorarbeiten zur Umsetzung

1.3. Leitfragen

Beabsichtigt ist die praxistaugliche Konzeption und Umsetzung einer durchgängigen Produktklassifikation für Baustoffe zur bestmögliche Unterstützung der verschiedenen Beschaffungsprozesse im Bauwesen.

Neben eingehenden Recherchen, der Klärung der theoretischen, technischen, wirtschaftlichen und organisatorischen Grundlagen sowie der Skizzierung einer realistischen Umsetzung sind zwei weitere Fragen zu klären:

Wie kann eine Klassifikation für das Bauwesen gleichzeitig zu regionalen Norm- und Zulassungsvoraussetzungen für Baustoffe kompatibel und trotzdem überregional nutzbar sein?

Kann durch Integration der Bauprodukte-Erzeuger als Kompetenzträger in den Systembildungsprozess ein System geschaffen werden, welches jene Markt- und Anwendungs tauglichkeit und Rechtskonformität besitzt die substituierenden Lösungen bisher fehlt?
1.4. Vorgangsweise

Die Leistungen von Einreicher und Unternehmen überschneiden sich naturgemäß und können nicht eindeutig voneinander abgegrenzt werden. Wesentlich war die gegenseitige Nutzung der jeweiligen Ergebnisse.

Neben der unter GNU-Lizenz\(^6\) frei verfügbar veröffentlichten und laufend in Zusammenarbeit mit Baustoffindustrie und anderen Marktteilnehmern aktualisierten Klassifizierungsstruktur „FREECLASS“ [freeclass2007], zu finden auf unserer Website www.industriedatenpool.com, ist auch die entsprechende Anwendung auf vorgenannter Website zu finden.

Die Nutzung von FREECLASS ist geregelt unter http://www.freeclass.eu/?r=000$@@ und wird hier kurz wieder gegeben:

FREECLASS - die freie Klassifikationsstruktur

- Urheberrechtsfreie Open-Source-Klassifikationsstruktur

Bisher verfügbare Strukturen zur Produktklassifikation können vielfach nicht urheberrechtsfrei verwendet werden, wodurch ihre Verbreitung und Nutzbarkeit stark eingeschränkt ist.

FREECLASS ist nach den Open-Source-Prinzip gestaltet. Das heißt, die Struktur darf einerseits urheberrechtsfrei in jeder beliebigen Applikation verwendet werden. Und andererseits können Sie jederzeit auf die weitere Entwicklung von FREECLASS Einfluß nehmen, indem Sie uns Ihre Wünsche und Anregungen mitteilen.

FREECLASS bleibt jedoch immer abwärtskompatibel, das heißt, dass Daten und Softwaresysteme, welche nach bisherigen Versionen aufgebaut sind, auch mit den neuesten Versionen problemlos arbeiten - jedoch möglicherweise ohne die neuesten Möglichkeiten zu nutzen.

\(^6\) GNU-Lizenz: eigentlich aus dem Bereich von Open Source Software kommend, eine Lizenzierungform unter welcher Urheberrechtsinhaber die Nutzung Ihrer Ergebnisse unter bestimmten Bedingungen kostenlos freigeben und Dritte zur Mitarbeit einladen. Diese Mitarbeit ist im gegenständlichen Prozess wie unter (4.2.5) beschrieben auch verankert
1.5. Kurze Darstellung des Unternehmens

inndata Datentechnik GmbH
FN 198640v FG Innsbruck
Pacherstraße 24
A-6020 Innsbruck

Branche: Dienstleistungen in der automatisierten Datenverarbeitung
Rechtsform: Gesellschaft mit beschränkter Haftung
Organe: GF Bmstr. Ing. Otto Handle, vertritt seit 29.08.2000 selbständig
Generalversammlung

Unternehmensgegenstand:
Das Unternehmen beschäftigt sich mit den vertriebsbegleitenden Datenströmen mit Schwerpunkt Baustoffsektor und stellt hierfür geeignete Werkzeuge und Rechenzentrumsdienstleistungen bereit.

Basis der Unternehmensitätät ist der laufend sehr hohe Anteil an interner Forschungs- und Entwicklungstätigkeit (großteils in Zusammenarbeit mit dem FFG). Daraus ergeben
sich laufend gut am Markt platzierbare Produkte und ein durchschnittliches Produktalter unter 3 Jahren.

Bezug zur Thematik:

Das Unternehmen ist durch die intensive, langjährige Tätigkeit im Bereich von Artikelstamm-Wartungssystemen und Katalogsystemen direkt in die Thematik involviert, da es sich um eine ergänzende Anwendung handelt. Aus Sicht des Unternehmens ist die Thematik der Produktklassifikation nicht nur bezüglich des Zusatznutzens für die Geschäftspartner wesentlich, sondern aufgrund der Gefahr des Markteintrittes eines substituierenden Anbieters mit Schwerpunkt Klassifikation auch für die nachhaltige Existenz des Unternehmens essentiell.

Die Ergebnisse der Master Thesis spiegeln somit direkt auch die laufende Arbeit des vom Einreicher geleiteten Unternehmens in fraglicher Thematik wider – und beeinflussen diese Arbeit auch wesentlich.

2. Grundlagen

2.1. Ermittlung organisatorischer Rahmenbedingungen

2.1.1. Situation der Baustoffindustrie

Den üblicherweise großindustriell und international organisierten Baustoffkonzernen (beispielsweise kommen Konzerne wie Lafarge oder Saint Gobain auf deutlich über 200.000 Mitarbeiter weltweit) stehen eine große Anzahl mittelständisch organisieter, regionaler Baustofflieferanten gegenüber. Wurde die Existenz lokaler Anbieter früher vorwiegend durch regionale Rohstoffvorkommen determiniert, wird eine noch stärkere Marktkonzentration heute nur durch zwei Faktoren verhindert.

Einerseits wirkt der allmählich gegenüber dem eigentlichen Produktwert wieder deutlich ansteigende Transportkostenanteil einer noch stärkeren Konzentration entgegen, andererseits begünstigt die bereits oben erwähnte, regional stark unterschiedliche Baugesetzgebung die Existenz lokal verwurzelter Lieferanten.

In Summe sind also auf der Erzeugerseite keine marktbeherrschenden Unter-

nehmen vertreten, ebenso gibt es auch auf Seite des Baustoffhandels keinerlei Monopolbildung, sodass jedes erzeugende Unternehmen darauf angewiesen ist, mit einer großen Anzahl von Großhändlern sowie auch gewerblichen Verarbeitern zusammenzuarbeiten und deren datentechnische Bedürfnisse zu erfüllen.

Das Kernbedürfnis der Baustoffindustrie ist somit die kostengünstige, zeitnahe und flächendeckende Verbreitung der vertriebsrelevanten Daten und Artikelstammdaten an die Handels- und Gewerbepartner.

Gleichzeitig erfordert die besondere Situation des Bauwesens, welches aufgrund der Vergabe eines Großteils der Bauleistungen über Ausschreibungen der Architekten und Fachplaner eine Verbreitung der produktrelevanten Informationen weit über den Fachhandel hinaus erfordert, um in Planung und Ausschreibungen entsprechend berücksichtigt zu werden, auch in diesem Bereich eine entsprechend leistungsfähige Multiplikatorfunktion.

Mit Hilfe von durchgängigen Produktklassifikationen lassen sich diese Prozesse sowohl von der Abwicklungsgeschwindigkeit im Durchlauf als auch von der Auffindbarkeit der Produkte für den Endkunden deutlich verbessern.

Gleichzeitig entsteht aber auch eine gewisse Sorge bezüglich Vergleichbarkeit der Produkte. Siehe auch 2.1.5

2.1.2. Situation des Baustoffhandels

Der österreichische Baustoffhandel wird im wesentlichen von mittelständisch strukturierten, überwiegend in Familienbesitz befindlichen, regionalen Baustoffhandelsbetrieben dominiert, deren Unternehmensumsatz sich üblicherweise zwischen 10 und 25 Millionen Euro pro Jahr aus ein bis vier Standorten bewegt.

Weiters existieren etwa ein halbes Dutzend größerer Unternehmen von etwa 100 Millionen Euro Umsatz, aus denen die inzwischen von der irischen CRH aufgekaufte Quester Gruppe mit etwa 250 Millionen Euro Umsatz und 31 Standorten deutlich hervorsticht.

Um dem größtenbedingten Einkaufsnachteil ein Gegengewicht zu schaffen, sind viele der heimischen Baustoffhandelsunternehmen in Einkaufsgemeinschaften wie der hagebau, ÖBAU, BEZ (Eurobaustoff) oder dem Bauring organisiert.

Diese sind üblicherweise föderal organisierte Verbandsgesellschaften im Eigentum der beteiligten Handelsunternehmen, die sich im wesentlichen mit zentralem Einkauf, Marketingaufgaben, Organisationsunterstützung, Markenbildung und in

8 Quelle: http://www.wirtschaftsblatt.at/cgi-bin/page.pl?id=414235
9 hagebau und ÖBAU sind seit drei Jahren in eine gemeinsame Gruppe fusioniert worden die nach wie vor von hagebau Deutschland unabhängig ist, obwohl hagebau Deutschland im Baumarktbereich über ZEUS inzwischen an Einfluß gewinnt
letzter Zeit verstärkt auch mit Zahlungsabwicklung und Delkredere-Funktionen10 den Lieferanten gegenüber beschäftigen.

Etwas abgekoppelt zu sehen sind die Lagerhäuser des österreichischen Raiffeisen-Lagerhausverbandes, welche sich, aus dem Agrarbereich kommend und genossenschaftlich organisiert, seit einigen Jahrzehnten auch zunehmend mit Baustoffhandelsaufgaben auseinanderzusetzen.

Weiters werden in letzter Zeit zunehmend auch große, zum Teil ausländische Baumarktketten (Bauhaus, Baumax, Hornbach, Praktiker und andere) im Baustoffsektor aktiv.11

Die durchschnittlichen Unternehmensgrößen sind trotz des insgesamt mit 80 Mio. Einwohnern wesentlich umfangreicheren Marktes nicht wesentlich größer als in Österreich, und auch die Raiffeisen Lagerhäuser haben ihr Äquivalent in Form der BAYWA.12

Es existieren deutliche Unterscheidungsmerkmale zwischen Baumarktketten und den Baustoffhändlern, obwohl auch der Baumarkt teilweise durchaus vergleichbare oder gar identische Produkte wie der klassische Baustoffhändler auslieft, und sich andererseits der Baustoffhandel keineswegs auf eine reine Großhandelsfunktion beschränkt.

Der Baustoffhandel arbeitet hingegen, neben seiner Großhandelsfunktion, auch im Privatgeschäft („Häuslbauer“) wesentlicher stärker projekt- und streckenorientiert, und auch mit einer stärkeren Beratungsfunktion, während die Lagerfunktion im Vergleich zum Umsatz gegenüber dem Baumarkt eher in den Hintergrund tritt.

Ein wesentliches Merkmal des Baustoffhandels ist die Tatsache, dass sich die Baustoffindustrie in hohem, fast an Direktvertrieb erinnernden Ausmaß in den Verkaufsvorgang einbringt.

10 Delkredere Funktion: Absicherung des Lieferanten gegenüber Zahlungsausfällen des – ggfs. gewerblichen - Endkunden
11 Quelle: eigene Recherchen
12 Quelle: [Wohlfahrt2005]
Die Reduktion des Handels auf eine reine Fakturen-, Delkredere- und Logistikfunktion kann in manchen, stark von industrieller Direktberatung dominierten Bereichen bereits fast als die Regel angenommen werden, während echter Direktvertrieb mit eigenen Auslieferungsstellen und eigener Rechnungslegung seitens der Industrie nach wie vor nur von wenigen Unternehmen (z.B. HILTI, Stotmeister (STO), WÜRTH)\(^\text{13}\), und von diesen auch ausschließlich adressiert an den gewerblichen Verarbeiter, vorgenommen wird.

Aufgrund der Tendenz von Handel und Industrie, jegliche Vergleichbarkeit von Preisen soweit als möglich zu erschweren, setzt sich jedoch immer mehr das sogenannte Nettopreisverfahren durch, d.h. der Hersteller gibt dem Handelsbetrieb für jeden Artikel laufend die für diesen Händler gesondert kalkulierten Nettopreise (meist ohne zusätzliche Rabatte, aber mit Berücksichtigung in Jahres-Mengenbonusvereinbarungen) an.

Organisatorisch betrachtet stellt dies einen massiven Rückschritt dar, umso mehr als Nettopreise nicht allgemeingültig, sondern zusätzlich durch Projektpreise, Staffelkonditionen und regional determinierte Frachtkostensätze differenziert sind.

2.1.3. Streckengeschäft im Bauwesen

Im Gegensatz zum üblichen Lagergeschäft, bei dem die Güter von den Industrien an den (Groß-)Handelsbetrieb geliefert, dort eingelagert und der Kunde aus Lagerbeständen bedient wird, erfolgt die Auslieferung der Güter beim im Bauwesen häufigen Streckengeschäft direkt vom Werk der erzeugenden Industrie auf die Baustelle des Endverarbeiters.

Diese Ware sieht also das Lager des Händlers nie. Daraus ergibt sich eine veränderte Aufgabenstellung für den Händler. Die Logistikfunktion übernimmt der Hersteller, die Lagerfunktion entfällt komplett. Kernaufgabe des Händlers ist neben

\(^{13}\) Diese Unternehmen werden im Zuge ihrer Sortimentsvervollständigung auch tlw. als Großhändler (OEM-Ware) tätig
der Kundenaquisition und der organisatorischen Abwicklung die Fakturierung und Inkassofunktion. Die Kundenberatung wird vielfach direkt von Mitarbeitern des Erzeugers übernommen, ebenso die Preisverhandlung, während der Händler für seine Dienstleistung einen prozentuell festgelegten Fakturaufschlag erhält.

In Extremfällen kann es sogar dazu kommen, dass die Auswahl des fakturierenden Handelspartners seitens der liefernden Industrie nach den vereinbarten Fakturaufschlägen erfolgt.

2.1.4. Zentralisierte Beschaffungslösungen im Bereich der Bauindustrie

Der zentrale Einkauf bzw. auch die Abteilungsleiter haben Zugriff auf diese Beschaffungsinformationen sowie die Möglichkeit, ihre Bedarfsmeldungen abzugeben. Aus diesen Bedarfsmeldungen, den Lagerstandsinformationen und den vorhandenen Preis- und Staffelkonditionsinformationen berechnet das e-Procurement-System dann optimierte Bestellvorschläge und leitet diese nach Bestätigung an die einzelnen Lieferanten weiter.

Leicht erkennbar handelt es sich also auch bei diesen Systemen nicht um eine revolutionäre Neuentwicklung (als welche sie vermarktet werden) sondern im Wesentlichen um eine deutlich optimierte Ergänzung ähnlicher, rudimentär in gängigen Warenwirtschaftssystemen ohnehin vorhandener Funktionalitäten.

Dennoch haben diese Systeme durchaus ihre Berechtigung, da sie einerseits Funktionen der elektronischen Bestellweiterleitung implementieren, andererseits durch ihren internetbasierenden Portalcharakter leicht und kostengünstig einer sehr großen Anzahl von (innerbetrieblichen) Anwendern zugänglich gemacht werden können.

Desweiteren treten die Anbieter derartiger Systeme üblicherweise stark systemintegrierend auf. Einerseits durch Nutzung der marktmachtbestimmten Beeinflus-

14BMEcat: etabliertes Standard-Datenformat zum Austausch von Kataloginformationen auf XML-Basis, siehe [BME2005]
sungsmöglichkeiten der Konzerne um die Anbindung von Lieferanten an das System voranzutreiben, anderseits durch die Bereitstellung von technischen Integrations tools, die eine derartige Anbindung technisch überhaupt erst ermöglichen und zum Dritten durch ihre netzwerkbildende Funktion.

Einmal angebundene Lieferanten können ihre Anbindung auch zur Betreuung nachfolgender weiterer Konzernbetriebe ohne Mehraufwand nutzen – es soll also im Laufe der Zeit ein rasch wachsendes Netzwerk von e-Procurement-Betreibern auf Kundenseite und von e-Procurement-fähigen Lieferanten auf der anderen Seite entstehen, und jeder neu angebundene Betrieb den tatsächlichen Nutzen für alle bereits vorhandenen Betriebe erhöhen\(^\text{15}\).

Hier nimmt die Produktklassifikation eine wichtige organisatorische Stellung ein, ermöglicht sie doch einen stark vereinfachten Zugriff auf gleichartige Artikel, welche über die geforderten Produkteigenschaften bequem ausgewählt werden können.

Unternehmen wie STRABAG gehören deshalb zu den am stärksten interessierten Treibern hinter Klassifizierungsinitiativen, gleichzeitig wird gerade ihr Engagement von anderen Marktteilnehmern durchaus kritisch gesehen, weshalb diese Situation in Summe nicht zwingend hilfreich für eine rasche Umsetzung sein muss.

2.1.5. Bedenken von Baustoffhandel und -Industrie

Neben großem Interesse mussten wir hierbei auch zum Teil massive Bedenken gegen die Einführung eines durchgängigen Produktklassifikationssystems zur Kenntnis nehmen, die im Nachfolgenden samt Erläuterung des Problems und einer kurzen Beantwortung der jeweiligen Frage aus Sicht des Einreichers dieser Arbeit wiedergegeben werden:

- Verfälschte Preisvergleiche bei unterschiedlichen Logistikbedingungen und Nebenleistungen, zentrale Einkaufs-Preiswartung für Handel und Bauindustrie
 - Wie in vielen anderen Wirtschaftsbereichen auch leben im Baustoffbereich sowohl Handel als auch Industrie von Spannen, welche immer mehr unter Druck geraten je höher die Transparenz der Preise wird.

\(^{15}\) Real wird dieser Netzwerkeffekt jedoch bisher noch nicht wahrgenommen, da die strukturellen Besonderheiten des Bauwesens bislang einer breiten Einführung solcher Systeme noch stark entgegenstehen und diese verzögern.
Klassifikation ist per se immer ein Weg zu höherer Transparenz und wird damit grundsätzlich zu Recht mit Besorgnis wahrgenommen.

- Der laufend steigenden Preistransparenz kann zumindest im Bereich der überregional agierenden Großkunden ohnehin nicht Einhalt geboten werden.

Einerseits sind die Preisdatenbanken der Großbetriebe und der in Einkaufsgenossenschaften organisierten Gewerbebetriebe inzwischen ausreichend leistungsfähig um diese Preistransparenz herzustellen, andererseits wäre dies im heutigen Europa auch wettbewerbsrechtlich bedenklich.

Hier ist ein proaktives Arbeiten seitens der Produktanbieter eine wertvolle Möglichkeit, zumindest sicher zu stellen, dass tatsächlich gleichwertige Produkte und Leistungen verglichen werden.

Es werden also zwar Vergleiche leichter möglich und automatisierbar, aber der Bezug nicht augenscheinlich als minderwertigerer Qualität erkennbarer Ware nur aufgrund des Einkaufspreises kann vermieden werden.

- Globale elektronische Beschaffungssysteme
 - Insbesondere im deutschen Raum erschien es vor einigen Jahren als attraktiv, globale Beschaffungsplattformen für Baustoffe ins Leben zu rufen. Die Sorge besonders des stationären Baustoffhandels diesbezüglich war und ist berechtigt, da derartige Plattformen unter Verzicht auf die vielfältigen Serviceleistungen des stationären Handels (Lagerfunktion, Logistikfunktion, Kreditfunktion, Sortimentierungsfunktion etc.) Preisvorteile für sich beanspruchen und damit den stationären Handel aus dem Geschäft drängen könnten.

 - Globale Beschaffungssysteme haben sich aufgrund der Besonderheiten des Baustoffhandels, aber auch wegen der Erkenntnis der Baustoffkunden auf genannte Serviceleistungen nicht verzichten zu können, nicht am Markt behaupten können.

Ausserdem hat der Betreiber des offenen Industriedatenpools schon vor Jahren offiziell bekannt gegeben, keine Beschaffungsplattform zu betreiben oder zu unterstützen. Alternativ mögliche Betreiber einer solchen Plattform sind nicht in Sicht und hätten
mangels Datenbasis und Unterstützung des Marktes auch mit massiven Problemen in der Startphase zu rechnen.

- Zu viele verschiedene Plattformen
 ▪ Das gegenständliche Projekt basiert auf jener Baustoffplattform, die den Internet-Hype am besten überstanden hat und heute den Datenstandard im österreichischen Bauwesen darstellt, dem offenen Industriedatenpool.

 Durch die damit verbundene Marktpräsenz kann sichergestellt werden, dass es nicht erneut zu einer großen Zahl von Insellösungen kommt.

- Korrekte Umsetzung
 o Unter anderem durch die problematischen Ergebnisse der letztendlich gescheiterten ÖBSL-Einführung 1996 sind die Marktbeteiligten verunsichert was die mögliche Qualität der Umsetzung einer neuen Produktklassifikation betrifft
 ▪ Geeignete Verfahren um die Qualität sicher zu stellen sind im Systemkonzept berücksichtigt (siehe 4.2.5)

- Bedrohung des Baustoffhandels durch e-Procurement
 o Besonders die von einzelnen sehr großen Bauindustrien massiv vorangetriebenen Arbeiten zur Einführung zentraler Konzernbeschaffungssysteme (e-Procurement Systeme16) werden von vielen Lieferanten als Bedrohung gesehen.
 ▪ Die Annahme der Baustofflieferanten, e-Procurement werde durch Produktklassifikation wesentlich erleichtert ist grundsätzlich korrekt.
 Jedoch sind die genannten Bauindustrien problemlos in der Lage auch hauseigene Klassifikationssysteme aufzubauen, weshalb dieses Argument den Verzicht auf eine globale Produktklassifikation zum Nutzen aller nicht rechtfertigen kann.

16 eProcurement: zentrale Beschaffungslösung großer Organisationseinheiten, basierend auf Multilieferantenkatalogen und leistungsfähiger Bezugsquellenoptimierung, siehe auch 2.1.4
- Kosten
 - Bisherige Produktklassifikationen waren stets mit erheblichen Kosten verbunden, deren Trägerschaft ungeklärt blieb
 - Die Gestaltung des projektierten Systems erfolgt in einer hochgradig automatisierbaren Form welche die Kosten für beteiligte Betriebe auf sehr niedrigem Niveau, typischerweise etwa 2.000 Euro jährlich, belässt.

- Verstärktes Eindringen ausländischer Hersteller ohne Berücksichtigung der regionalen Baustoffzulassungsvoraussetzungen.
 - Alle Marktteilnehmer sehen den möglichen Markteintritt nicht nach österreichischen Zulassungsbestimmungen getesteter ausländischer Ware aus unterschiedlichen Gründen mit Besorgnis. Es wird angenommen, dass derartige Produkte durch durchgängige Klassifikation leichter vom Markt aufgefunden und angenommen werden könnten.
 - Die Sorge ist so lange berechtigt, als das genutzte Klassifikationssystem nicht auf die österreichischen Zulassungsvoraussetzungen Rücksicht nimmt. Bislang war dies bei keinem System außer der verblichenen ÖBSSL der Fall, und diese Frage ist sicherlich wesentlich bei der Auswahl eines sinnvollen Produktklassifikationssystems (siehe 3.2).

Bei Einsatz eines Standard-Produktklassifikationssystems, welches auf die österreichischen Zulassungsvoraussetzungen Rücksicht nimmt, ist dieses Problem aber nicht gegeben.

2.2. Allgemeine Grundbegriffe

Der Begriff „Klassifikation“ umfasst ein weites Gebiet verschiedenster Ordnungssysteme für unterschiedlichste Anwendungszwecke. Im Kern besteht die Aufgabe stets darin, eine große Anzahl verschiedener, teilweise unstrukturierter Detailinformationen in einen recherchierbaren Gesamtcontext einzufügen.

Stets besteht auch die Arbeitsanforderung im Rahmen einer Klassifizierung aus zwei wesentlichen Bestandteilen. Einerseits ist eine Klassifikationsstruktur zu schaffen, das heißt es sind möglichst sinnvolle und übersichtliche, üblicherweise hierarchische Strukturen festzulegen, welche den zweiten Teil der Klassifikationsarbeit, die eigentliche Einordnung der Detailinformationen in die Struktur, ermöglichen.

17 dieser Teil der Arbeit wird als „Klassierung“ bezeichnet
Als Beispiel eines umfangreichen Klassifikationssystems sei das in [ÖSTAT2007] definierte internationale Wirtschaftsklassifikationssystem genannt und ein Auszug aus der Definition dargestellt:

Das integrierte System der internationalen Wirtschaftsklassifikationen

<table>
<thead>
<tr>
<th>Weltweit</th>
<th>Güter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISIC Rev. 3.1</td>
<td>CPC Ver. 1.1</td>
</tr>
<tr>
<td>NACE Rev. 1.1</td>
<td>CPA 2002</td>
</tr>
<tr>
<td>ÖNACE 2003</td>
<td>ÖCPA 2002</td>
</tr>
<tr>
<td>PRODCOM</td>
<td>Nationale Fassungen von PRODCOM</td>
</tr>
<tr>
<td>HS</td>
<td>SITC Rev. 4</td>
</tr>
</tbody>
</table>

Der Themenschwerpunkt dieser Arbeit liegt auf dem Detailbereich der Produktklassifikation, welche sich als Sonderform von der allgemeinen Klassifikationsthe- matik ableitet.

2.2.1. Produktklassifikation – allgemeines Umfeld

[POET2007] liefert eine anschauliche Grobdefinition von Logik und Nutzen einer Produktklassifizierung:

„Was ist ein Klassifikationsschema?

Klassifizieren bedeutet, ähnliche Gegenstände in Klassen zu gruppieren. In Supermärkten sind alle Waren gleichen Typs wie Milchprodukte, Nährmittel oder Süßwaren an einer Stelle zu finden, und jede Warengruppe ist weiter unterteilt oder eben klassifiziert zum Beispiel in Butter, Joghurt, Milch. Damit die Besteller am Bildschirm die Produkte verschiedener Lieferanten schnell auffinden, logisch ein-

18 POET2007, Abschnitt „was ist ein Klassifikationsschema“, siehe Quellenverzeichnis unter (8)
ordnen und problemlos miteinander vergleichen können, werden auch hier Produkteklassifikationen benötigt. Dazu werden die Produktdaten nach einem standardisierten Klassifikationsschema strukturiert. Produkte mit ähnlichen Eigenschaften werden also in bestimmten Produktklassen zusammengefasst. Dies geschieht meist in 4-stufigen Hierarchien."

Diese vereinfachte Darstellung gibt das Thema allerdings nicht vollständig wieder.

2.2.2. Überlieferte Ordnungssysteme

Bereits aus Zeiten vor der Einführung von IT-Systemen bekannt ist die wesentliche Unterscheidung von Ordnungssystemen nach der Anwendung bzw. der Zielgruppe:

a) Produktthersteller:

Ordnungssysteme von Herstellern orientieren sich regelmäßig ausschließlich an den eigenen, selbst erzeugten oder als Handelsware (ggfs. OEM-Ware\(^{19}\)) vertriebenen Produkten. Diese Produkte werden in Warengruppen eingeteilt, die sich vielfach entweder nach der Anwendung (Art des Produktes) oder nach hausinternen Prozessen richten. Ein weiteres, häufig auffindbares Merkmal ist eine Ausrichtung nach Rabattgruppen. Rabattgruppen der Hersteller unterscheiden sich jedoch vielfach in der Systematik von der eigenen Warengruppenstruktur.

Beispielsweise verfügt ein Lebensmittelproduzent über Warengruppen nach Gemüse, Milchprodukten, Backwaren und gleichzeitig aber über eine differierende Rabattgruppenstruktur welche mengendegressive Kosten bestimmter Produkte warengruppenübergreifend wiederspiegeln.

\(^{19}\) OEM: Original Equipment Manufacturer – Ware fremder Produzenten, welche unter der eigenen Marke vertrieben wird
b) **Handelsunternehmen:**

Funktionale (organisatorische) Gliederung:

Innerhalb von ERP-Systemen werden prozessorientierte funktionale Gliederungen sehr häufig in einer Form hinterlegt, welche folgenden Anforderungen genügen soll:
- Leichte Auffindbarkeit von Produkten durch die Verkaufsmitarbeiter und den Einkauf (auch zwecks Vergleich ähnlicher Produkte verschiedener Zulieferer)
- Orientierung an logistischen Prozessdefinitionen (Lagerort, Lademittel, Frachtvolumen etc.)
- Orientierung an Mindestbestellmengen, Mindestlagerständen etc.
- Kalkulatorische Grundlagen (Hersteller-Rabattgruppen, Grundlagen der eigenen Rabattkalkulation)

Vertriebstechnische Gliederung:

Die Anforderungen des Vertriebes im Handel unterscheiden sich maßgeblich von jenen der Produkterzeuger, vor allem durch die Sortimentsintegration, welche der Handel durchzuführen hat.

Einigermaßen homogen und herstellerübergreifend bereitgestellte Strukturinformationen der Hersteller wären für diese Sortimentsintegration äußerst hilfreich, stehen aber bislang eher selten zur Verfügung.

Die Handelsbetriebe sind deshalb üblicherweise gezwungen, ihre Warengruppenstrukturen herstellerübergreifend einigermaßen an die Wünsche der Kunden anzupassen, was nur durch erheblichen Arbeitseinsatz erzielbar ist.

Weiters wird diese Arbeit dadurch erschwert, dass sich die vertriebstechnische Gliederung im Regelfall von der funktionalen wesentlich unterscheiden (muss)
c) Endanwender (Endkunden)

Aus Sicht des Endanwenders im privaten Bereich stellt sich die Frage nach eigenen Warengruppenschlüsseln üblicherweise nicht. Im Business-to-Business Bereich (gewerbliche Verarbeiter) sind Ordnungssysteme jedoch sehr wohl ein Thema.

Richtet sich das Interesse des Privatkunden vorwiegend darauf, die Produkte einfach und in übersichtlichen Strukturen (Kataloge, Regale, Websites) zu finden, gehen die Ansprüche des Gewerbes deutlich darüber hinaus.

Insbesondere im Bereich der Kalkulation und Arbeitsvorbereitung ist auch der gewerbliche Endanwender auf strukturiert aufgebaute Produkt- und Preisdaten angewiesen und führt diese in vielen Fällen auch in seinem eigenen EDV-System mit.

Hier gibt es wesentliche Unterschiede zwischen den einzelnen Branchen. Bestimmte Branchen wie Elektroinstallation (SINFOS20), HSL-Installation (DATANORM) und andere, mit hohen Anzahlen unterschiedlicher Artikelnummern operierende Unternehmenstypen verwenden elektronische Datenaustauschformate zur Artikelstammwartung bereits seit vielen Jahren.

AUER wartet die Preisdaten dieser Artikelstämme seit Jahren mehr oder weniger regelmäßig, dennoch sind der Realbezug und die Aktualität dieser Daten kritisch zu sehen.

Andere Kalkulationssysteme arbeiten teilweise ähnlich, teilweise mit eigenen (vom Anwender angelegten) Artikelstämmen.

Die Problematik in diesem Umfeld entsteht aus der fehlenden Verknüpfbarkeit der eigenen Artikelstämme und der Preislisten der Lieferanten.

20 SINFOS, DATANORM sind wie PRICAT Standarddatenformate zum Austausch von Artikelinformationen, welche aber in der Standardanwendung im Gegensatz zu BMECat keine erweiterten Kataloginformationen, Bilder etc. übertragen
2.2.3. Zugriffssystematik auf unstrukturierte Daten – Übersicht

a) Elektronischer Zugriff auf strukturierte Daten

b) Indizierung von strukturierten Daten

Mit diesen technischen Grundlagen wurde in der EDV die Abbildung von bereits vorher organisatorisch in Form von Listen und Inhaltsverzeichnissen bereitgestellten Zugriffssystemen für strukturierte Daten fertig gestellt.

Die manuelle Bearbeitung von unstrukturierten Informationen, etwa in Bibliotheken oder innerhalb eines Buches mittels Karteien, Verweislisten, Indizes und Glossaren etc. konnte ebenfalls mit diesen Mitteln EDV-mäßig abgebildet werden.

c) Volltextindizes

Der nächste Schritt – und damit erstmals ein systematischer Fortschritt im Zugriff auf unstrukturierte Daten gegenüber der manuellen Bearbeitung (über die reine Erhöhung der Geschwindigkeit hinaus) erfolgte durch die Einführung von Volltext-Suchmaschinen in den 90er Jahren.

Getrieben wurde deren Entwicklung zum extrem hohen heutigen Standard im Wesentlichen durch den Erfolg des Internets. Hier entstehen zwei wesentliche Kerntypen:

Neben der Internet-Suchmaschine, deren derzeit hochentwickelte Variante Google (www.google.at) darstellt, etablieren sich unzählige branchenspezifische Online-Datenbanken, zu denen auch das europäische Bauinformationssystem des Einreichers dieser Arbeit gehört. (www.eurobau.com)
Der wesentliche Unterschied zwischen diesen beiden Systemansätzen ist der Ort der Datenspeicherung.

Internet-Suchmaschinen beinhalten reine Metadaten, bestehen also im Wesentlichen aus einer laufend aktualisierten Strukturinformationsdatenbank, die (nur) Verweise auf die tatsächlichen Inhalte und die entsprechenden Volltextindizes beinhaltet, nicht jedoch den eigentlichen Inhalt der üblicherweise in Websites auf einer Unzahl von fremden Webservern gespeichert ist.

Daneben existieren jede Menge organisationsspezifischer Lösungen, etwa in Form von Firmenwebsites basierend auf sogenannten Content Management Systemen, welche ebenfalls den Zugriff auf die unstrukturierten Daten über Volltextindizes ermöglichen.

Naturally bestehen auch noch eine Vielzahl anderer technischer Lösungen, insbesondere auch im Bereich lokaler EDV-Applikationen, die zwecks Recherche ähnliche Systematiken zur Verfügung stellen, obiges soll nur als Beispiel dienen.

d) Einschränkungen in der Nutzbarkeit bei Volltextsuchmaschinen

Die Nutzung von gängigen Internet-Suchmaschinen, Online-Datenbanken und ähnlichen Systemen leidet vorwiegend an der großen Anzahl von Treffern, welche von allgemein gehaltenen Suchanfragen erzeugt werden und somit erst recht die Recherche erschweren.

Vor allem die Exaktheit der Suchanfrage und deren Ergebnisse ist schwer herzustellen, da der Anwender im Regelfall keine exakten Daten als Eingabekriterium zur Verfügung hat, oder aber diese exakten Daten nicht "dem Buchstaben nach" mit den vorhandenen Daten übereinstimmen.

Dem wirken intelligente, auf Fuzzi Logic oder ähnlichen Verfahren aufgebaute Suchalgorithmen (z.B. beschrieben in [handle_patent1998]) zum Teil recht erfolgreich entgegen, trotzdem ist in Themenbereichen, welche sehr exakte Rechercheergebnisse erfordern (z.B. dem Bauwesen) eine derartige Systematik nicht ausreichend.

2.2.4. Produktklassifikationssysteme

Klassifikation ist der Vorgang, für mehr oder weniger unstrukturierte Informationen, die üblicherweise realen Objekten zugeordnet sind, eine sogenannte Klassifikationsstruktur zu erstellen, in welche diese eingeordnet und somit systematisch zugänglich gemacht werden können.

Weiter ist der Vorgang auch weder auf physikalische Objekte noch textalische Inhalte beschränkt, z.B. können auch Bildinformationen oder Musik klassifiziert werden.

[FRA2002] definiert auf Seite 12 die Relevanz von Produktklassifikationssystemen für die elektronischen Beschaffungsprozesse:

„Produktklassifikationen stellen die Basis für eine einheitliche, überbetriebliche Kategorisierung und Beschreibung von Produktdaten dar und bilden somit die Grundlage der elektronischen Geschäftsabwicklung...“

a) Unterscheidung von Klassifikationssystemen

[WikiKlass2007] definiert die Unterscheidung von Klassifikationssystemen wie folgt:

Vom Grundprinzip her lassen sich zwei Klassifikationsstrukturen unterscheiden: Bei einer Monohierarchie (starke Hierarchie bzw. auch Hierarchie mit Einfachvererbung genannt) besitzt jede Klasse nur eine Oberklasse, so dass die gesamte Klassifikation eine Baumstruktur besitzt.

Bei der Polyhierarchie (schwache Hierarchie oder Hierarchie mit Mehrfachvererbung genannt) kann eine Klasse auch mehreren Oberklassen untergeordnet werden. Wenn die Polyhierarchie stärker ausgeprägt ist und weitere Beziehungen zwischen den Klassen hinzukommen,
spricht man eher von einem Thesaurus. Auch in der Biologie spricht man bei der Artenzuweisung von der Systematik.

Eine andere Unterscheidung ist die in Analytische Klassifikation (vom Allgemeinen zum Besonderen, auf Präkoordination ausgerichtet) und Synthetische Klassifikation (vom Besonderen zum Allgemeinen, auf Postkoordination ausgerichtet). Die meisten Klassifikationen sind eher analytisch aufgebaut; ein prominentes Beispiel für synthetische Klassifikation ist die Facettenklassifikation.

Siehe auch [PFC2005]

b) Hierarchische Struktur produkterientierter Klassifikationssysteme

Alle gesichteten Quellen (unter anderem zu gängigen Produktklassifikationssystemen wie eCl@ss, profiCl@ss, Österreichischer Baustoffliste, bau: class, Heinz Warengruppenschlüssel, siehe 2.3) gehen von einem monohierarchischen Ansatz mit üblicherweise vier (frühere Versionen von bau: class sechs, UN/SPSC fünf) Hierarchiestufen aus.

Allerdings besitzen eCl@ss, profiCl@ss, ETIM und bau: class teilhierarchische Erweiterungen in Form von Merkmalsleisten.

Das im Elektrobereich beheimatete und recht erfolgreiche ETIM beschränkt sich ebenso wie der für den Kalkulationsbereich in Österreich relevante AUER Eurostamm auf nur 2 Hierarchiestufen, wobei ETIM zusätzlich auf eine Reihe von Merkmalen zurückgreift, um einzelne Produkte innerhalb einer Gruppe detaillierter zu beschreiben.

Zwecks leichter Lesbarkeit und einfacherer Handhabung werden diesen Unterteilungen (Klassen) eigene Nummern (Klassifikationsnummern) zugewiesen, die durchgängig und eindeutig sind.

Diese Klassifikationsnummern beinhalten neben der Strukturinformation (wievielte Hierarchieebene) auch die Zugehörigkeit zu bestimmten Zweigen der Baumstruktur und sollten eindeutig und einmalig definiert sein.

c) Eindeutige interne Nummerierung der Klassen

Nachdem Klassenstrukturen, insbesondere in der Anfangsphase, einem ständigen inhaltlichen Wandel unterliegen, der sich in rasch aufeinanderfolgenden Versions-
nummern zeigt, muss ein Mechanismus zur Aufrechterhaltung abwärtskompatibler und trotzdem inhaltlich flexibler Strukturen gefunden werden.

Zu diesem Zweck wird bei modernen Klassifikationssystemen ergänzend zur „offiziellen“ Klassifikationsnummer noch eine interne, ein-eindeutig definierte Identifikationsnummer jeder einzelnen Klasse hinterlegt (datentechnisch gesprochen, ein Primärschlüssel21).

Dies ermöglicht in späteren Versionen eine Änderung der offiziell dargestellten Klassifikationsnummern, etwa um eine neue Klasse einzufügen oder eine Unterklasse einer anderen Oberklasse zuzuweisen ohne die Abwärtskompatibilität und Datenkonsistenz in Frage zu stellen.

d) Merkmale und Eigenschaften als Ausprägungsformen produktoorientierter Klassifikationssysteme

Diese wesentlich geringere Zahl erforderlicher Klassen ergibt sich aus dem Konstrukt der Merkmale (oder Eigenschaften), welches sich bei jüngeren Klassifikationssstandards durchgängig durchgesetzt hat.

Am vorgenannten Beispiel einer EPS-Dämmplatte sei dieses Konzept kurz erklärt:

Je nach Klassifikationsstandard findet sich die Produktgruppe der EPS-Dämmplatten unter einer bestimmten Nummer im letzten Segment des Hierarchiebaumes.

Nun unterscheiden sich EPS-Dämmplatten trotz der grundsätzlichen Identität der Produktgruppe doch maßgeblich voneinander. Beispielsweise sind Länge, Breite und vor allem Dicke der Platten unterschiedlich, ebenso andere Produkteigenschaften wie Dämmwerte, Druckfestigkeiten, Brandwiderstandsklassen usw.

21 Primärschlüssel: ein spezielles Feld in einer Tabelle einer relationalen Datenbank, welches sich dadurch auszeichnet ausschließlich eindeutige Werte in den Datenzeilen zuzulassen und für jede Zeile zwingend befüllt sein muss.
Statt nun (wie die ÖBSL) für jede dieser Varianten eine eigene Klassifikationsnummer zu bilden, bieten moderne Klassifikationsstandards die Möglichkeit, je nach Produktart bestimmte Eigenschaften mit Werten zu belegen und dadurch grundsätzlich gleichartige Produkte sehr fein granuliert unterscheidbar zu machen.

e) Stand der Technik bei Produktklassifikationssystemen

Entsprechend vorgenannten Definitionen handelt es sich bei den gängigen Produkklasifikationssystemen üblicherweise um teilhierarchische Klassifikationsstrukturen mit etwa 4 Hierarchiestufen, extern sichtbaren und eindeutigen internen Klassifikationsnummern und einem nachgelagerten Merkmalssystem zur feineren Granulierung.

Abb.: aus [PFC2005], Seite 20

Merkmalsfreie Systeme kommen im Bereich interner Warengruppenstrukturen

22 Granulierung: Ausdruck für die Detailliertheit der Klassifikation, ob z.B. nur nach Ziegeln gesucht werden kann oder feinere Unterscheidungsmerkmale dargestellt werden können
weiternhin häufig vor, nicht jedoch als branchenübergreifender Klassifikationsstandard.

Es handelt sich weiter im Regelfall um präkoordinative\(^{23}\) analytische Klassifikationsstrukturen die meist mit Einfachvererbung arbeiten.

Mehrfachvererbung (also die Zuordnung einer Klasse zu mehr als einer darüberliegenden Klasse) kommt de facto nicht vor.

Inhaltliche Strukturen von Produktklassifikationssystemen werden üblicherweise händisch von einer Expertengruppe erstellt und dann manuell oder mit Automatisationsunterstützung aus bestehenden Datenbanken heraus mit Inhalten (sprich zugeordneten realen Artikeln) befüllt.

Die laufende Erweiterung der Strukturen ist schon aufgrund des laufenden Fortschrittes der Produktentwicklung unvermeidbar, wodurch eigene Verfahren und Organisationsformen zur Vermeidung von Inkompatibilitäten verschiedener Versionen erforderlich sind.

\[\text{f) Abgrenzung zu anderen Klassifikationssystemen}\]

Die Produktklassifikation ist somit eine Sonderform der Klassifikation, welche üblicherweise in oben genannter Ausprägung umgesetzt wird und unterscheidet sich dadurch sowohl systematisch als auch in der Form der Erstellung von der langen Reihe anderer Klassifikationen, welche in unterschiedlichen Themenbereichen zum Einsatz kommen.

2.3. Ermittlung und Bewertung bestehender Lösungsansätze

Im Folgenden sollen bestehende Ansätze zur Produktklassifikation dargestellt und hinsichtlich der allgemeinen Nutzbarkeit für das Bauwesen und auch speziell bezüglich der Nutzbarkeit in Österreich bewertet werden.

Quellen sind, neben eigenen Recherchen und den offiziellen Verlautbarungen der jeweiligen Träger unter anderem auch [FRA2002], [MM2007] und [UNSPSC2005] (Siehe 8)

2.3.1. UN/SPSC

Standard Product and Services Classification Code

Dieses Klassifikationssystem wird von den Vereinten Nationen herausgegeben, beinhaltet sowohl Produktklassifikation als auch die Klassifikation von Dienstleistungen und ist branchenunabhängig und international einsetzbar.

\(^{23}\) Präkoordinativ: vom allgemeinen zum Besonderen ausgerichtet mit immer feiner werdender Unterteilung
Es handelt sich um ein brancheneutrales Klassifikationssystem mit dem Focus auf internationale Einsetzbarkeit.

Die Hierarchiestruktur besitzt fünf Ebenen, welche jeweils durch einen zweistelligen Nummernschlüssel gekennzeichnet werden, sowie einem beschreibenden Text.

Ebene 1: Segment
Ebene 2: Family
Ebene 3: Class
Ebene 4: Commodity
Ebene 5: Business Function

Sie wird in verschiedensten Sprachen veröffentlicht. Die deutschsprachige Veröffentlichung (auf über 500 Seiten) findet sich unter [UNSPSC2005]

Trotz der sehr umfangreichen Basis an Klassifikationsgruppen ist die Granulierung für die Anwendung im Baustoffbereich nicht ausreichend, wie sich im folgenden Beispiel (entnommen aus [UNSPSC2005]) nachvollziehen lässt.

<table>
<thead>
<tr>
<th>Code</th>
<th>Beschreibung</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>102389 30131600</td>
<td>Bricks</td>
<td>Bausteine</td>
</tr>
<tr>
<td>102390 30131601</td>
<td>Cement bricks</td>
<td>Bausteine aus Zement</td>
</tr>
<tr>
<td>102391 30131602</td>
<td>Ceramic bricks</td>
<td>Bausteine aus Keramik</td>
</tr>
<tr>
<td>102392 30131603</td>
<td>Concrete bricks</td>
<td>Bausteine aus Beton</td>
</tr>
<tr>
<td>102393 30131604</td>
<td>Stone bricks</td>
<td>Bausteine aus Stein</td>
</tr>
<tr>
<td>102394 30131700</td>
<td>Tiles and flagstones</td>
<td>Ziegelsteine und Platten</td>
</tr>
<tr>
<td>102395 30131701</td>
<td>Cement tiles or flagstones</td>
<td>Ziegelsteine oder Platten aus Zement</td>
</tr>
<tr>
<td>102396 30131702</td>
<td>Stone tiles or flagstones</td>
<td>Ziegelsteine oder Platten aus Keramik</td>
</tr>
<tr>
<td>102397 30131703</td>
<td>Concrete tiles or flagstones</td>
<td>Ziegelsteine oder Platten aus Beton</td>
</tr>
<tr>
<td>102398 30131704</td>
<td>Ceramic tiles or flagstones</td>
<td>Ziegelsteine oder Platten aus Stein</td>
</tr>
<tr>
<td>133043 30131700</td>
<td>Head stones</td>
<td>Kopfsteine</td>
</tr>
<tr>
<td>102399 30140000</td>
<td>Insulation</td>
<td>Isolierung</td>
</tr>
<tr>
<td>102400 30141500</td>
<td>Thermal insulation</td>
<td>Thermische Isolierung</td>
</tr>
<tr>
<td>102401 30141501</td>
<td>Weather stripping</td>
<td>Wetterauschalung</td>
</tr>
<tr>
<td>102402 30141502</td>
<td>Insulation blankets</td>
<td>Isolierungsdecken</td>
</tr>
</tbody>
</table>

Trotz der guten internationalen Verbreitung von UN/SPSC (siehe 2.4.2) ist dieses System somit für das Bauwesen nicht ideal.

2.3.2. eCl@ss

Mit massiver Unterstützung durch verschiedene deutsche Verbände und Ministerien entwickelt das Institut der deutschen Wirtschaft gemeinsam mit führenden deutschen Unternehmen seit dem Ende der 90er Jahre am Warenklassifikationsstandard eCl@ss.

Auch eCl@ss beansprucht, branchenneutral und international einsetzbar zu sein und wird hierfür auch mehrsprachig angeboten.

24 Granulierung: Begriff für den Detaillierungsgrad einer Klassifikationsstruktur, also wie fein die Einschränkung der gewünschten Produkteigenschaften dargestellt werden kann.
Die Versuche, eCl@ss als übergeordneten Standard zu möglichst weitgehender Branchenneutralität zu verhelfen, beinhalten auch diverse vom deutschen Bundesministerium geförderte Initiativen zur Integration anderer, branchenspezifischer Klassifikationsstrukturen wie ETIM25 oder bau:class26 in den Hierarchiebaum von eCl@ss.

eCl@ss besitzt vier Hierarchieebenen:

Ebene 1: Sachgebiet
Ebene 2: Hauptgruppe
Ebene 3: Gruppe
Ebene 4: Untergruppe

Diese werden durch Merkmale erweitert, die eine feinere Auswahl ermöglichen. Für die Kennzeichnung jeder Ebene werden 2-stellige Zahlenkombinationen verwendet, sodass jeweils 99 Verzweigungen pro Klasse möglich sind.

Beispiel: 22-14-01-01 Betonrohr, -schale und -Formstück

Thomas Einsporn, Leiter der Geschäftsstelle Köln von eCl@ss schreibt in [EBIZ2007]:

*Mit insgesamt über 30.000 Klassen im aktuellen Release 5.1 inkl. der Service-
Packs 5.1.1 bis 5.1.3 umfasst eCl@ss bereits in der heutigen Ausbaustufe einen
wesentlichen Teil der von Industrie und Handel benötigten Strukturen zur Produkt-
klassifikation und -beschreibung. Zusätzlich verfügt eCl@ss derzeit über 51.638
Schlagworte, die ein zielgerichtetes und schnelles Auffinden von Produkten und
Dienstleistungen innerhalb der Klassifikation ermöglichen.*

[...] Um der Wirtschaft teure Doppelarbeit zu ersparen und Überschneidungen mit
branchenorientierten Systemen wie bau:class, ETIM und proficl@ss zu vermeiden,
hat eCl@ss hier mit den Anbietern dieser Klassifikationssysteme eine enge Zu-
sammenarbeit zur Integration von deren Inhalten in eCl@ss beschlossen. [...] Ende
2007 wird in einem eCl@ss-Release 6.0 eine entsprechend harmonisierte und
darüber hinaus um weitere Produktklassen bzw. –merkmale – u. a. aus den Berei-
chen Energiewirtschaft, Medizintechnik, und Informationstechnologie – erweiterte
Klassenstruktur veröffentlicht.

Dies scheint auch dringend erforderlich. Eine eingehendere Recherche der Struk-
tur von eCl@ss durch den Einreicher dieser Arbeit ergab, dass trotz grundsätzli-
cher Branchenneutralität dieses Klassifikationsstandards die Eignung für die Bau-
branche nur begrenzt gegeben ist.

In mehreren Expertengesprächen mit Dipl. Ing. Entzian (bau:class) und Dipl. Ing.
Andre Lindner (eCl@ss) hat sich herausgestellt, dass besonders bau:class eben-

25 ETIM: Produktklassifikation für Elektronprodukte, getragen vom deutschen Elektrogroßhandel
26 bau:class: getragen vom privaten Unternehmen f: data in Dresden in enger Zusammenarbeit mit Bauindustrie und DIN
falls davon ausgeht, dass die in eCl@ss enthaltene Struktur in Gruppe 22 (Bau-
stoffe) nicht optimal geeignet sei.

Ein vom deutschen Bundesministerium für Wirtschaft (BMWi) seit 2005 geförder-
tes Integrationsprojekt soll bau:cl@ss und eCl@ss zu Kompatibilität verhelfen (sie-
he [eClass2007/2]), indem die komplette Baustoff-Klassifikationsstruktur von
bau:class im Hierarchiezweig 22 von eCl@ss integriert werden soll.

Aufgrund der technisch vergleichbaren Struktur erscheint dies technisch machbar, organisatorisch bestehen dem Vernehmen nach noch Probleme, die jedoch mit
der zum Jahreswechsel 2007/2008 zur Verfügung stehenden neuen Version 6.0
von eCl@ss gelöst sein sollen.

Weiters scheint aus Sicht des Autors die Frage der Finanzierung noch ungelöst,
da sich das Preismodell der Nutzung von bau:class und von eCl@ss deutlich un-
terscheidet. Bau:class weist zwar zwecks Verteidigung ihrer eigenen, recht hohen
Tarife (Tarifblatt liegt dem Autor vor, soll aber vertraulich behandelt werden) immer
wieder darauf hin, dass auch eCl@ss nicht auf Dauer kostenfrei zur Verfügung
stehen wird.

Offizielle Veröffentlichungen von eCl@ss in jüngster Zeit bestätigen dies jedoch
nur zum Teil. Die genannten Gebühren sind vergleichsweise moderat und erst bei
einer Betriebsgröße über 250 Personen wirksam.

2.3.3. ETIM

Die deutsche Elektrowirtschaft betreibt schon seit mehreren Jahren den Produkt-
klassifikationsstandard ETIM, der in Zusammenahbeit mit dem Fraunhofer Institut
durch den Verein Interessengemeinschaft ETIM Deutschland e.V. getragen wird.

ETIM verwendet nur zwei Hierarchiestufen:

Ebene 1: Artikelgruppen
Ebene 2: Artikelklassen

Zusätzlich werden Synonyme und Merkmalsleisten verwendet.

Beispiel:
EC000089 Befestigungstechnik - Allzweckdübel
(Betonrohre und andere Baustoffe gibt es hier nicht)

Wie bau:class lässt sich aufgrund der hierarchischen, um Merkmale erweiterten
Struktur auch ETIM in eCl@ss integrieren bzw. ist dies zumindest teilweise bereits
geschehen.

2.3.4. bau:class

Nachdem bereits seit 2001 in Deutschland Gesprächskreise zur Entwicklung eines
gemeinsamen Klassifikationsstandards für Baustoffe existieren, wurde im Jahr
Produktklassifikation für das Bauwesen

2004 durch führende Verbände und Unternehmen der deutschen Bauindustrie sowohl ein DIN-Arbeitsausschuss zur Normung von Bauproduktmerkmalen gegründet als auch die Klassifizierungsinitiative bau:class gestartet, deren Ergebnisse auf der größten Fachmesse BAU in München Anfang 2007 erstmals offiziell als Produkt vorgestellt wurden.

Wie eCl@ss verfügt auch bau:class inzwischen über eine vierstufige Hierarchiestruktur, auf welche die ursprünglich sechsstufige Struktur mittlerweile zurückgeführt wurde, um die Integration in eCl@ss (siehe 2.3.2 und [eClass2007/1]) zu ermöglichen, sowie über eine Merkmalsleiste.

Abb.: technische Struktur von bau:class, aus [fData2006]

27 GAEB: gemeinsamer Ausschuss Elektronik im Bauwesen, [www.gaeb.de], Herausgeber unter anderem der STLB Bau (vergleichbar österr. LB/H Leistungsbeschreibungen) und der Standardschnittstelle für Ausschreibungsdaten GAEB
Wesentliche Unterschiede zu eCl@ss ergeben sich in der Merkmalsvielfalt und der Trägerschaft der Klassifikationsstruktur. Während die Struktur eCl@ss eher Industrie-(Hersteller-)orientiert definiert ist, wird bei bau:class nach eigenen Aussagen (z.B. von Dipl. Ing. Entzian, Vertriebsleiter von f:data, dem Herausgeber von bau:class) sehr stark auf die Wünsche der Anwender (Bauindustrien, Baugewerbe) Rücksicht genommen.

Weiters basiert bau:class zwar in der Darstellungsansicht ebenso wie eCl@ss auf zweistelligen Nummerncodes pro Hierarchieebene. Diese werden bei bau:class aber nicht als interne Referenzierung verwendet und sind nach eigenen Aussagen auch nicht für jede Anwendung identisch.

Bei allem Enthusiasmus des Herausgebers und trotz einer technisch ausgezeichneten Struktur muss klargestellt werden, dass von einer marktführenden Stellung in Deutschland nicht gesprochen werden kann. Diese hat nach wie vor der (technisch unterlegene) Heinze Warengruppenschlüssel (siehe 2.3.7) inne, der gegenüber bau:class vor allem mit jahrzehntelanger Präsenz und einer wesentlich vollständigeren Erfassung aller erforderlichen Baustofftypen punktet.

2.3.5. ProfiCl@ss

Im Hart-/Eisenwarenbereich und Sanitärbereich ist die ProfiCl@ss Klassifikation stark vertreten. Wie bei bau:class und eCl@ss handelt es sich auch hier um ein in mehreren Hierarchiestufen zuzüglich Merkmalsleiste abbildbares, teilhierarchisches Klassifikationssystem. (siehe auch www.proficlass.org)

Beispiel:

AAF072c001 Bautechnik // Belichtungs-, Lüftungseinr. , Ausstiege //Dachflächenfenster // Dachbalkone // Holz // Multifunktionsverglasungen

Baustoffe sind in profiCl@ss kaum zu finden. Dies wird sich wohl auch in näherer Zeit nicht ändern, weil auch profiCl@ss in der eCl@ss Struktur integriert werden soll. Hierzu muss die vergleichsweise tief verschachtelte hierarchische Struktur an die vierstufige Struktur von eCl@ss angepasst werden, wie [PFC2005] ausführt:

28 Primärschlüssel: Technischer Ausdruck für eine Tabellenspalte in Datenbanksystemen, welche ausschließlich mit eindeutigen Werten befüllt ist und keine Leerwerte enthält. Über diese Tabellenspalte ist jeder einzelne Datensatz eindeutig ansprechbar.
Hinter dem Herausgeber, dem ProfiCl@ss International e.V., stehen unter ande-
rem Einkaufsverbände wie e/d/e und 3e, in gegenüber früher stark reduziertem
Ausmaß auch hagebau Deutschland (ein führender Baumarkt- und Baustoff-
Einkaufsverband).

Ein gemeinsames Beschaffungsportal von e/d/e, 3e und hagebau Deutschland
wurde unter www.profiportal.de Anfang des neuen Jahrtausends gegründet, je-
doch mangels Erfolg 2002 wieder eliminiert.

 Unsere Ziele

profiCl@ss ist eine branchenübergreifende, unabhängige und neutrale Initiative zur Klassi-
fizierung von Produktdaten. Hersteller, Handel und Verbände erarbeiten diese Klassifi-
kation als gemeinsamen Branchenstandard für die Bezeichnung und die sachliche Be-
schreibung von Produkten. Dies geschieht mit Hilfe von eindeutigen Produktmerkmalen
und genormten Merkmalsausprägungen. Ziel ist es, die Artikeldaten aller Lieferanten,
Hersteller und Händler gemäß einer einheitlichen Klassifizierung zu strukturieren. Damit
ist gewährleistet, dass die Erstellung von Katalogen für internetbasierte Anwendungen und
für Druckmedien sowie der Austausch elektronischer Produktdaten wesentlich effizien-
ter ist.

(aus [proficlass2007/1])
2.3.6. CCG Standard Warenklassifikation

(Siehe auch [CCG2007])

Diese Klassifikationsstruktur wurde basierend auf der deutschen Binnenhandelsstatistik 1978 erstmals veröffentlicht. CCG ist auch im Artikelstammwartungssystem SINFOS integriert und wird über die SG1 vertrieben welche auch die Verbreitung des EAN-Artikelnummernstandards umsetzt.

Als Standard-Warenklassifikation besitzt sie einen dreistufigen hierarchischen Aufbau mit Warenbereich, Warengruppe und Artikelgruppe, ist damit aber zumindest für den Baustoffbereich nicht ausreichend detailliert und hat hier keine Bedeutung.

2.3.7. Heinze Bau-Warengruppenschlüssel

(Siehe [heinze2002] und http://www2.heinzebauoffice.de/cms/live/heinze_de/content/psfile/file/83/Warengrupp440ef05e9ef61.zip)

[heinze2002] bezieht sich in der Legitimation des Heinze Bau-Warengruppenschlüssels auf die Verbände des Baustoffhandels und der Industrie in Deutschland:

Warengruppenschlüssel 2002 der Baubranche - BAU-Warengruppenschlüssel

Im Auftrag der Marktpartner und Verbände des Fachhandels und der Industrie hat die Heinze GmbH/BauDatenbank GmbH die Entwicklung eines übergreifenden Warengruppenschlüssels moderiert, der das gesamte für die Baubranche relevante Waren sortiment berücksichtigt.

Interessant in diesem Zusammenhang ist auch eine Aussage eines führenden Managers in der Baustoffindustrie zur Bedeutung von bau:class in Deutschland: (siehe Anhang 5: Expertengespräche und e-Mail Kommunikation)

Betreff: bau:class Klassifizierungsinitiative Baubranche

Anbei einige Infos zu diesem Thema:

[...]

In D laut Info meiner Kollegen derzeit keine Bedeutung (Heinze ist dort Marktleader).

Der hierarchische Warengruppenschlüssel, der im Gegensatz zu den meisten anderen Klassifikationssystemen über keine Merkmale verfügt ist vierstufig:29

01. Sortimentsgruppe
01.01. Warengruppe
01.01.01. Hauptartikelgruppe
01.01.01.01. Artikelgruppe (Zuordnung von Artikeln)
Beispiel: 03.01.01.01 Betonrohre/-schalen und –Formstücke

Die Warengruppenstruktur erscheint grundsätzlich sehr gut für das Bauwesen geeignet. Die lässt sich auch leicht aus der jahrzehntelangen Erfahrung des Herausgebers als Marktführer für gedruckte und elektronische Branchenkataloge für das Bauwesen in Deutschland und der Schweiz erklären.

Auch die Legitimation als deutsches Standardsystem ist nicht nur glaubwürdig, sondern am Markt auch entsprechend umgesetzt. Dies gilt jedoch nicht für Österreich, wo dieses System keine Marktpräsenz zeigt.

Allerdings hat dieses System durch die fehlenden Merkmalsleisten eine wesentliche Schwäche gegenüber einem projektierten, integrierten Produktklassifikationssystem eCl@ss/bau:class, welche einen Markterfolg letzterer in Deutschland auf lange Sicht als zumindest nicht denkunmöglich erscheinen lässt.

Auch die Granulierung erscheint als etwas zu grob um eine exakte Produktauswahl aufgrund verlangter Eigenschaften zu ermöglichen.

29 Anmerkung: Mit Herbst 2007 hat HEINZE ein neues Onlinesystem (www.hbo.de) eingeführt welches nun auch über Merkmalsleisten verfügt.
2.3.8. Auer Eurostamm

Der Eurostamm verfügt aber über keinerlei Verknüpfung mit Realartikeln und kann somit nicht als Produktklassifikationssystem im eigentlichen Sinn bezeichnet werden.

2.3.9. Österreichische Baustoffliste

51121040 Betonfalzrohr DN400/600 eiförmig

Es handelte sich um ein monohierarchisches, vierstufiges Klassifikationssystem mit etwa 16.000 Basisklassen, welches von der Bundesinnung Baugewerbe und der Austria Bau\(^\text{30}\) gemeinsam in Zusammenarbeit mit der LB/H\(^\text{31}\) herausgegeben wurde.

Die Umsetzung erfolgte technisch entsprechend dem damals aktuellen Stand noch ohne Merkmalsleisten, inhaltlich jedoch durchaus geeignet, und wurde unter anderem auch von AUER Bausoftware unterstützt.

Dennoch konnten sich die Verfechter dieses Standards nicht gegen die Bedenken der Baustoffindustrie bezüglich verschärfter Preisvergleichbarkeit durchsetzen, zumal sich rasch herausstellte, dass die fehlenden Merkmalsleisten schwere Einschränkungen in der Nutzbarkeit mit sich bringen, und ein weitergehender Nutzen für die Baustofferzeuger nicht dargestellt werden konnte.

2.3.10. Baustoffliste ÖA

2.4. Ermittlung von Rahmenbedingungen des e-Business

\(^{30}\) Austria Bau: Vereinigung von 7 Landes-Baugenossenschaften, welche wiederum Einkaufsverbände von kleinen und mittelständischen Baununternehmen darstellen

\(^{31}\) LB/H: Leistungsbeschreibung Hochbau – Sammlung offizieller Standardtexte für Ausschreibungspositionen im öff. Bereich

\(^{32}\) genauere Beschreibung siehe 3.1.3
2.4.1. Nutzungsgrad von e-Business seit 2002

Nutzung und Planung der neuen Technologien

Auffällig ist die deutlich unterschiedliche Ausprägung bei Handel und produzierender Industrie. Die Ursachen dafür sind vorwiegend in den doch bereits recht erfolgreichen Bemühungen zur Umsetzung von Online-Vertriebsmaßnahmen zu sehen, welche sich vorwiegend im Vertriebsbereich und weniger im Produktionsbereich abspielen.

Rücksprachen mit verschiedenen Baustoffhändlern (etwa Herrn Othmar Lutz, Prokurist und unter anderem für die zentrale IT des größten westösterreichischen Baustoffhändlers Würth Hochenburger zuständig) ergaben, dass die Handelsbetriebe das Datenmanagement bevorzugt über die lokale IT abwickeln und nur höchst ungern auf Drittsysteme zugreifen, um die klare Struktur interner Abläufe nicht in Frage zu stellen.

B2B-Bestellungen bei Herstellern über Onlinesysteme sind somit für Händler wenig attraktiv (Systembruch), während gewerbliche Betriebe zunehmend über Onlinesysteme bei Händlern einkaufen.
Zwei von einander direkt abhängige Teilbereiche sind das Stammdatenmanagement und die Produktklassifikation, welche direkt davon abhängig bzw. eine Erweiterung desselben ist.

Es ist auffällig, dass schon im Jahr 2002 bereits ein sehr großer Prozentsatz der Betriebe Artikelstammwartung einsetzt oder zumindest darüber nachdenkt es in Kürze einzusetzen, und weiters Produktklassifikation in etwa 40% der Unternehmen bereits ein Thema darstellt.

Aus diesem Hintergrund erklärt sich auch die deutlich überwiegende Nutzung der CCG-Klassifikation, welche integrativer Bestandteil des EAN33- sowie des SINFOS-Datenpool Systems ist, welche wiederum in oben genannten Bereichen marktführend aufgestellt sind. Zumindest in Bezug auf das Bauwesen ist dieses Bild somit deutlich verzerrt.

Eine Erläuterung von CCG, EAN und SINFOS findet sich unter [CCG2007]

33 EAN: Europäisches Artikellnummernsystem, in Österreich von SG1 vertrieben. 13-stellige, ein-eindeutige Artikelnummern

2.4.2. Aktueller Nutzungsgrad von e-Business 2007

Leider stehen österreichische Daten für 2007 noch nicht zur Verfügung, als Überblick über den derzeitigen Nutzungsgrad wird deshalb hier die deutsche Publikation [EBIZ2007] verwendet, die im Folgenden auszugsweise dargestellt wird.

Aus Platzgründen wird hier aus genannter, frei verfügbarer Studie nur eine weitere Darstellung übernommen, welche die Bedeutung von Klassifikations- und Daten austauschstandards illustriert.

Deutlich erkennbar ist, dass Standard-Produktklassifikationssysteme nach wie vor nur bei Großunternehmen über 250 Beschäftigten und in Form von eCl@ss ernst zunehmenden Marktanteil besitzen, während der Artikelstamm- und Katalogaus tausch bereits flächendeckend genutzt wird, aber sich hier nach wie vor kein ein heitlicher Standard herausgebildet hat.

(Anmerkung: hier können die Werte für BMEcat, Datanorm etc. ohne weiteres zusammengezählt werden, da die Konvertierung zwischen diesen Formaten flächendeckend gelöst ist. Der gesamte Anteil von Unternehmen die Artikelstammdaten austausch nutzen ist somit bei etwa 40% anzusiedeln)

2.5. Ermittlung technischer Rahmenbedingungen

Wie bereits erwähnt, wird zur effektiven Nutzung eines Produktklassifikationsstandards ein entsprechendes Umfeld benötigt.

Entsprechend den Ausführungen in [Handle2006] sind in den letzten Jahren im Bereich der elektronischen Geschäftsabwicklung im Bauwesen bereits wesentliche Fortschritte gemacht worden:

Die zur Prozessverbesserung geeigneten Themenbereiche sind

- Artikelstammwaltung
- Vertriebs- und anwendungsorientierte Produktdaten
- Ausschreibungsunterstützung und elektronischer Ausschreibungsversand

34 Standardisierung im e-Business erfolgt vorwiegend in vier Bereichen: Produktklassifizierung, Katalogdatenaustausch, Austausch von Geschäftsdocumenten und Geschäftsprozessintegration
• elektronische Beschaffungsprozesse über Großhandelsportale und (in Baukonzernen) e-Procurement-Systeme
• elektronischer Belegdatenaustausch

Mit Ausnahme des elektronischen Belegdatenaustausches und des Randthemas von e-Procurement-Systemen haben sowohl die technologische und organisatorische Entwicklung der Dienstleistungs- und Systemanbieter als auch die erforderliche Marktbereinigung in den letzten Jahren einen Stand erreicht, welcher den prozessoptimierenden Einsatz dieser Systeme nicht nur sinnvoll, sondern absolut notwendig erscheinen lässt.

[ÖSTAT2005] lässt erkennen, dass auch die infrastrukturellen Rahmenbedingungen, sprich die Verfügbarkeit von Breitband-Internet und entsprechender EDV-Infrastruktur mehr als ausreichend zur Umsetzung des Projektes auf breiter Basis ist:

Computer-Einsatz

Im Jänner 2005 haben 97% aller Unternehmen in den untersuchten Wirtschaftszweigen (ausgenommen jene des Bereiche Kredit- und Versicherungswesen) einen Computer eingesetzt. Während fast 100% aller mittelgroßen und Großunternehmen (mit 50 und mehr Beschäftigten) Computer einsetzen, sind es unter den Kleinunternehmen nur 96%.

Internetnutzung

95% der österreichischen Unternehmen mit mehr als 9 Beschäftigten haben im Jänner 2005 das Internet genutzt. Fast 100% aller mittelgroßen und Großunternehmen (mit 50 und mehr Beschäftigten) haben einen Internet-Zugang. Bei den Kleinunternehmen liegt der Vergleichswert bei 94%.

Insbesondere durch den flächendeckenden Erfolg des von der Unternehmung des Autors betriebenen offenen Industriedatenpools ist auch die für eine durchgängige Produktklassifikation wesentliche Thematik des Katalogdatenaustausches und der Artikelstammwartung im Bauwesen als gelöst zu betrachten.

Es kann also davon ausgegangen werden, dass die technischen und infrastrukturellen Voraussetzungen für eine durchgängige Produktklassifikation im Bauwesen gegeben sind.
3. Bewertung

3.1. rechtliche Rahmenbedingungen

Eine eingehende Betrachtung aller vorgenannten Klassifikationssystem lässt erkennen, dass bei der Erstellung und Markteinführung bezüglich internationaler Anwendung vorwiegend organisatorische, sprachliche und wirtschaftliche Rahmenbedingungen berücksichtigt werden, und erst in weiterer Folge auf rechtliche Bestimmungen in den einzelnen Zielländern Bezug genommen wird.

Dies hat zur Folge, dass insbesondere die in Deutschland entstehenden, als „international“ bezeichneten Klassifikationssysteme tatsächlich außerhalb von Deutschland an rechtliche Grenzen stoßen, welche im Bauproduktebereich im wesentlichen mit dem nach wie vor noch nicht vollständig harmonisierten Umfeld im Bereich des Normenwesens und der Baustoffzulassungen bzw. regionalen Bauordnungen zusammen hängen.

Interessant in diesem Zusammenhang ist auch eine Aussage eines Verbandspräsidenten in der Baustoffwirtschaft zur Zulassungsproblematik: Er weist im E-Mailverkehr ausdrücklich darauf hin, dass „ca.20% der in Deutschland verwendeten Baustoffe in Österreich nicht zugelassen sind, da sie der CEN-Norm/Ö-Norm noch nicht entsprechen.“

(siehe Anhang 5: Expertengespräche und e-Mail Kommunikation)

3.1.1. Bauordnungen

Wie in anderen Staaten der europäischen Union auch, existieren in Österreich aufgrund des föderalen Prinzips mehrere (konkret 9) verschiedene Bauordnungen. (Siehe auch [baurecht2007]). Weiters unterscheiden sich die Bauordnungen und technischen Bauvorschriften, Planunterlagenverordnungen usw. auch ganz wesentlich zwischen den EU-Mitgliedsstaaten.

Dies führt in weiterer Folge dazu, dass Baustoffe, welche aufgrund gegebener Prüfungen (CE-Kennzeichnung) oder nationaler Zulassungen35 zwar grundsätzlich entsprechend der EU Grundfreiheit des freien Warenverkehrs in den Verkehr gebracht werden dürfen, trotzdem aber nicht unbedingt tatsächlich in Gebäude eingebaut werden dürfen!

Die wesentlichen Zulassungsvoraussetzungen für den tatsächlichen Einbau von Bauprodukten in den österreichischen Bundesländer regeln sich über

- CE-Kennzeichnung
- Baustoffliste ÖA

35 Siehe Leitentscheidung des EuGH in der Rechtssache 120/78, Cassis de Dijon, ein in einem Mitgliedstaat rechtmäßig in Verkehr gebrachtes Produkt darf prinzipiell auch in anderen MS in Verkehr gebracht werden, sofern keine Gefährdung der Gesundheit und Sicherheit der Bevölkerung zu erwarten ist.
- Einzelzulassungen
- Österreichische und EU-harmonisierte Normung
die nachfolgend beschrieben werden.
Aus Sicht einer anwendungstauglichen Produktklassifikation ist zwingend auf diese Anforderungen Rücksicht zu nehmen.

3.1.2. CE Kennzeichnung

Die Anbringung des CE-Zeichens auf Produkten, deren Konformitätsnachweis fehlt, stellt einen Straftatbestand dar.

Die Anbringung auf Produkten, welche (noch) nicht in die kennzeichnungspflichtigen Produktgruppen fallen, ist nicht statthaft.

Die Primärhaftung trifft den Inverkehrbringer des Produktes, deshalb ist es insbesondere bei Produkten aus anderen Staaten üblich, sich über Regressvereinbarungen entsprechend rückzuversichern.

Sinn der CE-Kennzeichnung ist nicht ein Qualitätsnachweis, sondern nur der Nachweis, dass der gegebenenfalls vorgeschriebene Konformitätsnachweis vorhanden ist (siehe Anhang) und die dafür erforderlichen Prüfungen durchgeführt worden sind.

Bauprodukte erfordern die Anbringung einer CE-Kennzeichnung seit 198836, allerdings gelten verschiedene im Bauwesen verwendete Produkte nicht als kennzeichnungspflichtige „Bauprodukte“ im Sinne der Richtlinie.

Die CE-Kennzeichnung bewirkt die EU-weite Erlaubnis, dieses Produkt in den Verkehr zu bringen, reicht aber nicht aus, um die Zulassungsvoraussetzungen zum Einbau in Bauwerke nachzuweisen!

Jedoch enthält die CE-Kennzeichnung auch bestimmte Eigenschaftswerte, die damit als nachgewiesen gelten und kann somit in bestimmten Fällen auch zum Nachweis der geforderten Eigenschaften für eine bestimmte Produktgruppe nach der regionalen Baustoffzulassungs-Erfordernis geltend gemacht werden.

Wesentlich ist hierbei, dass sich für ein und denselben Baustoff (z.B. Fassaden- dämmplatten aus expandiertem Polystyrol) nicht nur die rechtlichen, sondern auch die technischen Zulassungsvoraussetzungen zwischen einzelnen EU-Mitgliedsstaaten zum Teil maßgeblich unterscheiden.

Daraus folgt, dass beispielsweise ein in Deutschland zum Einbau zugelassenes Fassaden- dämm-Material zwar aufgrund der CE-Kennzeichnung in Österreich in den Verkehr gebracht werden dürfte, aufgrund seiner technischen Eigenschaften aber die österreichische Verwendungszulassung gar nicht erhalten würde!

Beispiel: Fa. Steinbacher (ein österreichischer Dämmstoffhersteller mit Standorten in Italien, Österreich und Deutschland) produziert für die genannte Produktgruppe von Fassaden- dämmplatten aus expandiertem Polystyrol zwei physikalisch unterschiedliche Produkte für den deutschen und den österreichischen Markt, die auch zwei unterschiedliche CE-Kennzeichen besitzen:

Österreichisches Produkt: CE-Bezeichnungsschlüssel:
EPS-EN 13163-L1-W2-T2-S2-P4-DS(N)2-DS(70,-)1-TR150-BS100

Deutlich erkennbar sind die Normzugehörigkeit (EPS-Europäische Norm 13163) sowie eine Vielzahl in den CE-Schlüssel kodierter Eigenschaftswerte, deren Nachweis über diesen Schlüssel gegeben ist.

3.1.3. Baustoffliste ÖA

Die Baustoffliste ÖA definiert weiters im Detail die Liste der Baustoffe und deren Zulassungsvoraussetzungen für den Einbau in Bauwerke entsprechend den regionalen Bauordnungen.

Auf eine detailliertere Darstellung des Vorgangs wird mit Verweis auf das Quellenverzeichnis verzichtet. Siehe auch Anhang 1

37 nicht das Inverkehrbringen von ausländischen Baustoffen in Österreich, dies wird über die CE-Kennzeichnung geregelt
3.1.4. Einzelzulassungen

Je nach Produktgruppe und Produkt kann es auch gegeben sein, dass ein be-
stimmter Artikel zwar zum Einbau in ein Bauwerk bestimmt ist, aber trotzdem we-
der der CE-Kennzeichnung noch der Regelung in der Baustoffliste ÖA unterliegt.
In den meisten (nicht allen) dieser Fälle kann eine technische Einzelzulassung er-
forderlich sein, welche über eine autorisierte Prüfanstalt (z.B. Bvfs, bestimmte hö-
here Technische Lehr- und Versuchsanstalten) ausgestellt wird.

3.1.5. Österreichische und EU-harmonisierte Normung

Weiters wird die Zulässigkeit eines bestimmten Baustoffes zum Einbau in österrei-
chische Bauwerke bei bestimmten Baustoffarten vom österreichischen Normungs-
wesen, bei anderen Baustoffarten von bereits harmonisierten Europanormen de-
terminiert.

3.2. Bewertung bestehender Klassifikationssysteme

Aus Sicht der Marktverbreitung und technischen Anwendbarkeit sind nach einge-
hender Prüfung eigentlich nur zwei existierende Klassifikationssysteme zur flä-
chendeckenden Einführung in Österreich geeignet:
- eCl@ss mit Erweiterung bau:class
- Heinze Bauwarengruppenschlüssel

AUER fällt mangels direktem Bezug zu Produkten aus, die ÖBSL mangels Akzep-
tanz und weil sie technisch nicht mehr zeitgemäß ist. Alle anderen genannten Sys-
teme haben entweder zu geringen Bezug zum Bauwesen, sind wie UN/SPSC für
den Einsatz im Bauwesen zu wenig detailliert oder wie die Baustoffliste ÖA für ei-
nen anderen Anwendungszweck ausgelegt.

Der Heinze Bauwarengruppenschlüssel lässt eine technisch zeitgemäße Merk-
malssleiste ebenso vermissen wie eine Bezugnahme auf österreichische Baustoff-
zulassungen. Außerdem hat sich der Herausgeber von allen Ambitionen, seine
Dienstleistungen in Österreich anzubieten bereits 2003 zugunsten des Unterneh-
mens des Einreichers der Master Thesis zurückgezogen und stellt deshalb auch
aus dieser Sicht keine Option dar (siehe [handle2006], Seite 9).

Somit verbleibt als einziges, möglicherweise sinnvolles, bestehendes Produktklas-
sifikationssystem das kombinierte System eCl@ss mit Erweiterung bau:class.
Wie aus der Dokumentation der laufenden Arbeitskreise und dem Mailverkehr er-
sichtlich. hat auch der Einreicher lange Zeit eine darauf basierende, mit dem öster-
reichischen Industriedatenpool integrierte und an österreichische baurechtliche Gegebenheiten angepasste Gemeinschaftslösung gegenüber einer Eigenentwicklung favorisiert.

Diese Lösungsvariante wird auch nach wie vor von großen Bauindustrien bevorzugt, während sich andere Marktteilnehmer zurückhaltend bis skeptisch aussprechen und einer österreichischen Lösung durchaus Positives abgewinnen können.

Gegen eine eCl@ss/bau:class Lösung spricht neben der bisher fehlenden Anpassung an Österreich und der noch nicht vollzogenen Integration der beiden Strukturen in Deutschland auch, dass es den österreichischen Marktteilnehmern noch nicht möglich war, ein klares Statement bezüglich der Lizenzkosten von bau:class zu erhalten.

Es ist also festzuhalten, dass eCl@ss/bau:class die in Österreich gültigen Zulassungsvoraussetzungen für Baustoffe nicht darstellt und dies in näherer Zukunft auch nicht zu erwarten ist, was ein Ausschlusskriterium darstellt.

Weiters besitzt eCl@ss/bau:class im Gegensatz zum offenen Industriedatenpool derzeit über keine relevante Datenbasis im Artikelstammbereich für Österreich, sodass hier enorme Aufwendungen in der Primärerfassung notwendig würden. Dies könnte durch die vorgeschlagene Integration mit dem offenen Industriedatenpool zwar vermieden werden, doch mangels Übereinkunft ist dies bislang noch nicht möglich.

Wegen all dieser Gründe und des schleppenden Fortganges hat sich der Einreicher dieser Master Thesis entschlossen, die mögliche Alternative eines für Österreich zugeschnittenen Produktklassifikationssystems („FREECLASS“) im Rahmen der Master Thesis im Detail zu prüfen und parallel auch die Umsetzbarkeit im Rahmen seines Unternehmens nachzuweisen.

38 Die Integration von eCl@ss und bau:class ist mit Version 6.0 von eCl@ss angekündigt, welche laut Dipl. Ing. Andre Lindner (eCl@ss Köln) mit Ende 2007 erscheinen soll
39 diesbezüglicher Schriftverkehr liegt dem Autor vor
4. Konzeption des neuen Systems

4.1. Beschreibung eines idealen Systems

Wie sich im Laufe der Recherchen herausgestellt hat (siehe voriger Absatz), ist die Anpassung eines der bereits bestehenden Produktklassifikationssysteme für den österreichischen Baustoffsektor nur schwierig möglich und deshalb die Überlegung anzustellen, ob die Ziele mit einem für österreichische Verhältnisse und auf die Anforderungen der österreichischen Bauordnungen zugeschnittenen, österreichischen Produktklassifikationsystem besser erreicht werden können.

Für eine derartige Entscheidung sind aufgrund des enormen Umfanges eines solchen Projektes jedoch nicht nur die Wünsche aus Anwendersicht, sondern auch technische Grundlagen und die Frage der organisatorischen und wirtschaftlichen Machbarkeit relevant.

Basierend auf den durchgeführten Recherchen und Expertengesprächen soll deshalb im Folgenden die funktionale Definition eines optimal erscheinenden Systems erfolgen.

4.1.1. Allgemeine Systemgestaltung

Die Systemgestaltung ist jedenfalls so zu wählen, dass

- der Informationszugriff für den Anwender möglichst einfach und entsprechend seinen üblichen Arbeitsweisen erfolgen kann
- die Aufbereitung der Klassifikationsstrukturen möglichst hohe Fachkompetenz in den einzelnen Produktgruppen einfließen lässt
- Die Klassifikationsstruktur für einen laufenden (kontinuierlichen) Verbesserungsprozess geeignet ist
- die Datenstrukturen abwärtskompatibel sind und somit auch die gemischte Nutzung aktuellerer und etwas älterer Strukturen ermöglichen
- die eigentliche Klassierung der Baustoffartikel möglichst stark automatisiert werden kann. Hierzu ist auf bereits bestehende Daten im offenen Industriedatenpool zurückzugreifen um Mehrfacherfassungen möglichst hintan zu halten
- die Integration in Fremdsoftware möglichst einfach durchgeführt werden kann
- die Ausgabe der klassifizierten Artikelstämme auch in Fremdklassifikationen möglich ist
- die Ausgabe der klassifizierten Artikel- und Produktinformationen für möglichst viele Softwaresysteme lesbar ist
die Systembetriebskosten im Rahmen bleiben
- die internen Umsetzungskosten im Bereich der Baustoffindustrie niedrig sind
- die erforderliche flächendeckende Umsetzung und Glaubwürdigkeit erzielbar ist
- die Übereinstimmung mit regionalen Rechtsgrundlagen (Normen, Baustoffzulassungen etc.) sichergestellt ist
- das System auch inhaltlich zur Anwendung in benachbarten Staaten erweitert werden kann (Sprachproblematik, Zeichensätze, regionale Baustoffzulassungen und Rechtsgrundlagen) und bereits erfasste Datenstämme in diesen Regionen ebenfalls verwertet werden können.

4.1.2. Datenbasis, Zuordnung der Klassen und Merkmale

Die Kosten für die Bereitstellung eines durchgängigen Produktklassifikations-systems beinhalten als sehr wesentlichen Teilkostenfaktor die Primärerfassung der zu klassierenden40 Baustoff-Artikel.

Hierbei ist zuerst die richtige Klasse für das Produkt zu finden und dann innerhalb dieser Klasse dem Produkt die erforderliche Anzahl von Eigenschaftswerten zuzuordnen.

40 Klassieren: Einordnung bestehender Realartikel in die Klassifikationsstruktur, Zuweisung der entsprechenden Eigenschaftswerte
41 [fData2006/2] Benutzerhandbuch bau:class Klassifikationseditor
Um die mit diesem aufwendigen Prozess verbundenen Kosten und Fehlerquellen gering zu halten sollte ein ideales Produktklassifikationssystem - auf bereits bestehenden Datenbanken aufbauen - die in der zugrundeliegenden Datenbank bereits vorhandenen Merkmalsausprägungen automatisiert verarbeiten (weitgehend ohne händische Nachbearbeitung)

Aus diesem Grund liegt nahe, die bereits mit umfangreichen Eigenschaftswerten (Masse, physikalische Eigenschaften, Brandklassen etc.) versehenen Industrie- und Industriestammdaten im offenen Industriepool als Ausgangsbasis der Klassierung zu verwenden.

Nachdem im Industriepool die wesentlichen Eigenschaften der einzelnen Artikel bereits elektronisch erfasst bereitstehen, sollte ein ideales Produktklassifikationssystem automatisiert auf diese bereits vorhandenen Daten zugreifen ohne eine weitere händische Bearbeitung zu erfordern.

4.1.3. Systemintegration mit Produktklassifikation

eClass, bau: class, AUER, interne Warengruppenstrukturen von Baustoffhandel und Gewerbe…die Liste von Ordnungssystemen für Baustoffe ist lang und jede
dieser Strukturen hat besondere Vorteile für einen bestimmten Einsatzzweck. Doch darunter leidet die Austauschbarkeit.

Die im Industriedatenpool gespeicherten Baustoffdaten verfügen über alle wesentlichen Merkmale und Eigenschaften, die von den verschiedenen Klassifizierungssystemen als Datenbasis erfordert werden.

Um nach einer einmaligen Klassifikationsüberleitung in verschiedenen Klassifikationsformaten ausgegeben werden zu können, sollte ein ideales Produktklassifikationssystem in der Lage sein, mit unbeschränkt vielen verschiedenen Klassifikationsstrukturen umgehen zu können und als Integrationssystem die Vermittlung dazwischen zu übernehmen.

Aus Sicht von Softwareherstellern, welche mit klassifizierten Produktdaten arbeiten wollen, ist es wesentlich, die technische Datenstruktur der klassifizierten Produktdaten über mehrere Klassifikationssysteme hinweg identisch zu halten.

Konkret soll also jedes beliebige Softwaresystem in die Lage versetzt werden, sowohl Strukturinformationen wie auch klassifizierte Produktdaten in datentechnisch vergleichbarer Art und Weise zu erhalten.

So kann ein Softwarehaus Anwendungen für verschiedene Länder und Branchen entwickeln, welche sich je nach Bedarf mit Artikelstammdaten und Klassifikationsinformationen entsprechend des Anwendungszweckes versorgen, und so sowohl regional als auch branchenmäßig unabhängig sind.

Das zu konzipierende „ideale“ Produktklassifikationssystem muss also in der Lage sein, diese Integrationsrolle zu übernehmen.

Dazu sind erforderlich:

- Ausgabe der klassifizierten Daten in verschiedenen Formaten
 - z.B. BMEcat als wesentliches Standardformat\(^\text{42}\)
- Ausgabe der klassifizierten Daten nach verschiedenen Klassifikationsstrukturen (nach Maßgabe der rechtlichen Voraussetzungen)
 - Z.B. eCl@ss, bau:class, profiCl@ss, AUER Eurostamm, industriedatenpool Standardklassifikation FREECLASS
 - Mappingfunktion
 Functionalität, um anhand der gespeicherten Eigenschaftswerte eine Zuordnung zwischen den verschiedenen Klassifikationssysteme automatisiert herstellen zu können.

4.1.4. Anwendungen

In diesem Abschnitt wird beispielhaft dargestellt, welche Anwendungen durch eine durchgängige Produktklassifikation erleichtert und welche Prozesse verbessert werden können.

Betriebswirtschaftliche Ausgangsbasis ist eine Situation zunehmender organisatorischer und technischer Vernetzung aller am Bauprozess beteiligten Unternehmen über alle Wertschöpfungsstufen hinweg.

Bereits Univ.Prof. Dipl. Ing. Dr. Hans H. Hinterhuber schreibt im Detail über die zunehmende Partnerschaft zwischen Handels- und Industrieunternehmungen in [Hinterhuber2004] Seite 41:

a) Produktrecherche

Eine durchgängige Baustoffklassifikation vereinfacht die Produktrecherche nach verlangten Eigenschaften enorm. Im übersichtlichen Strukturbaum trifft der Anwender eine Vorauswahl (z.B. Dämmplatten EPS-W) und schränkt dann die Auswahl nach den geforderten Eigenschaften (Type, Stärke, österreichische Baustoffzulassung, Druckfestigkeit etc.) ein.

So stellt ein Anwender auf einfache Weise die ausschreibungskonforme Produktauswahl sicher und vermeidet die versehentliche Verwendung für Österreich nicht zulässiger Baustoffe ausländischer Produktion.

Die Verfügbarkeit klassifizierter Baustoffdaten ermöglicht die Integration dieser vereinfachten Produktrecherche in beliebige Softwaresysteme und Anwendungen wie beispielsweise:

- Baubetriebliche Software (z.B. BAU-SU)
- Kalkulationssoftware (z.B. AUER Bausoftware)
- Ausschreibungs-/ AVA Systeme (z.B. ABK)
- Warenwirtschaftssysteme von Baustoffhändlern
- Internet-Vertriebssysteme von Baustoffhändlern
- Internet-Informationssysteme wie www.eurobau.com
- Multimediale Multilieferanten-Katalogsysteme wie z.B. inndata iconomy

b) **Herstellerübergreifende Wartung von Artikelstammdaten**

- Excel
- CSV
- ASCII mit fixen Feldlängen
- DATANORM 4.0, 5.0
- PRICAT D.96A
- BmeCAT 1.2 (XML)
- http-Webservice (Direktintegration in Softwaresysteme)

Die Auswahl von gleichwertigen Produkten und die Prüfung der tatsächlichen physischischen Gleichwertigkeit ist über Produktklassen und Eigenschaftsmerkmale mit wesentlich geringerem Aufwand elektronisch durchführbar.

c) Periodenvergleich – statistische Preisentwicklung

Klassifizierte Artikelstamm-Datenbanken ermöglichen unter anderem auch eine wesentlich bessere Übersicht über die statistische Preisentwicklung von Produktsegmenten über Herstellergrenzen hinweg.

In Form von Vorperiodenvergleichen lassen sich Trends und spezifische Preisentwicklungen sehr gut feststellen, wodurch sich etwa im Bereich der Nachtragskalkulation, bei der Bewertung der wirtschaftlichen Folgen von Bauverzögerungen und ähnlichen Situationen wesentlich genauere Schlüsse ziehen lassen.

d) Klassifizierte Baustoffkataloge für e-Procurement Anwendungen

Insbesondere konzerninterne elektronische Beschaffungssysteme („e-Procurement“) wie VEMAP oder ePhilos sind im Kern auf einen leistungsfähigen Multilieferantenkatalog angewiesen. (siehe auch [LH2003]44)

Dessen Nutzbarkeit wird neben der eigentlichen Qualität der Softwareanwendung vor allem von zwei Faktoren determiniert:

- der Verfügbarkeit umfangreichen Produktdatenmaterials
- einer geeigneten Produktklassifikation

Die Produktdaten können hierbei aus verschiedenen Quellen kommen. Einerseits geben verschiedene Spezialsortimente (etwa der Büroartikelfachhandel) ihre Produktkataloge vielfach schon in elektronischer Form aus, andererseits spielt natürlich gerade im Bauwesen der Zugriff auf Datenpoolsysteme wie Heinze (D) und Industriedatenpool (Ö) eine wesentliche Rolle.

Nachdem sich die Beschaffung im Konzernbereich (oder auch im Bereich der öffentlichen Hand) aber nicht nur auf Baustoffe beschränkt, sondern auch andere Güter (wie eben auch Büromaterial) umfasst, ist die Möglichkeit der Integration unterschiedlicher Produktklassifikationen ebenso wichtig wie die Verfügbarkeit der Produktdaten in Standarddatenformaten, um den Import in das e-Procurement-System zu gewährleisten.

Hier kommt einem gut gestalteten Produktklassifikationssystem also auch eine Systemintegrationsfunktion zu (siehe auch 4.1.3)

e) Beispiel: Preisanfrage mit klassifiziertem Warenkorb

Ausgangsbasis: Der Kalkulant nutzt AUER um die Ausschreibung eines Bauprojektes zu kalkulieren. Hierzu greift er positionsweise auf bereits bestehende, in seinem AUER Programm gespeicherte Kalkulationsvorgaben zurück, welche unter anderem auch die (hier relevanten) Materialmengensätze enthalten.

Nachdem es üblicherweise die Teilnahme an etwa 10 bis 20 Ausschreibungen erfordert um einen Auftrag zu erhalten, ist es notwendig, zu einem raschen Ergebnis zu kommen.

Neben Ablaufoptimierungen in anderen Bereichen, die hier mangels Relevanz nicht zur Sprache kommen, ist die ABC-Analyse im Materialbereich ein wesentlicher Vorgang, um kostenrelevante Materialien von weniger relevanten Artikeln zu unterscheiden.

Üblicherweise wird nun im Bereich der A-Güter eine Telefax-Anfrage an die Baustofflieferanten durchgeführt, während die B- und C-Güter mit vorhandenen Preisinformationen angesetzt werden.

Der Verbesserungsansatz für diesen Prozessschritt bezieht sich nun auf die Integration der beim Baustofflieferanten hinterlegten Preisinformationen in die hauseigene Kalkulation des Baugewerbebietes. Diese war bislang vor allem mangels Übereinstimmung der Artikelstämme mehr als schwierig. Mehr oder weniger abstrakten Artikeln (z.B. AUER Eurostamm siehe 2.3.8 oder andere interne Artikelstämme) mit mangelhaft gewarteten Durchschnittspreisen stehen perfekt gewartete Kalkulationen der Baustofflieferanten gegenüber, deren Artikelnummern aber nicht mit den abstrakten internen Artikeln in Zusammenhang gebracht werden können. Ein elektronisch automatisierter Abgleich ist somit unmöglich.

Das mit Fa. AUER Bausoftware vorbereitete Projekt soll nun entsprechend folgender Skizze zu einer Abbildbarkeit abstrakter AUER-Nummern auf reale Artikel-

45 Die Kalkulation von Bauleistungen erfolgt nach Einzelpositionen (z.B. 1 m² Ziegelmauerwerk) welche in einer elektronisch nach ÖNORM B 2063 (Deutschland: GAEB) verfügbaren Ausschreibung in sein Kalkulationsprogramm eingespielt werden. Die ermittelten Preise teilen sich in Material, Arbeit und Maschinenkosten (Sonstiges) und beinhalten bereits Gemeinkostenzuschläge etc. Zur Kalkulation des Materialanteils wird auf gespeicherte Materialpreise sowie auf Preisanfragen wie hier beschrieben zurückgegriffen.

46 A-Güter: vereinfacht etwa jene 5-10 % von Artikeln, welche etwa 70 bis 80% des Materialwertes ausmachen.

Abb.: elektronische Materialpreisfindung über Baustoffklassifikation
4.1.5. Mono- oder polyhierarchisches System

Die Auswahl von Baustoffen muss jedenfalls über eine Warengruppenstruktur (monohierarchischer Produktklassifikationsbaum) erfolgen, welche um ein Eigenschaftssystem erweitert wird.

Die Notwendigkeit diese Hierarchiebaumes ergibt sich fast zwingend aus dem üblichen Anwenderverhalten und der Tatsache, dass die meisten Softwareprogramme und inhaltsstarken Websites ihre Inhalte über derartige Hierarchienbäume zugänglich machen. Das prominenteste Beispiel ist der Explorer im Windows-Betriebssystem, der die Verzeichnisstruktur auf ebensolche Weise zugänglich macht.

Gleichzeitig ist eine reine Monohierarchie nicht ausreichend, um Baustoffe ausreichend detailliert zu beschreiben. Zwar wäre dies theoretisch denkbar, aufgrund der Vielfalt an möglichen Eigenschaften aber praktisch kaum durchführbar und hoffnungslos unübersichtlich.

Abb.: Eigenschaftsvielfalt von Transportbeton, aus www.industriedatenpool.com

Die Entscheidung für ein teilhierarchisches System mit Merkmalsleiste ergibt sich somit fast zwangsläufig.

4.2. Anwendungsarchitektur

Aus den vorangegangenen Kapiteln ergibt sich die sinnvolle Möglichkeit, ein eigenständiges Produktklassifikationssystem für Baustoffe für den österreichischen Markt bereit zu stellen.

Zur Umsetzung in die Praxis sind verschiedene theoretische Überlegungen anzustellen, die hier, zum Teil vereinfacht (bei rein EDV-bezogenen Themen) wiedergegeben werden:

4.2.1. Strukturdefinition der Produktklassifikation

Aus Gründen der Übersichtlichkeit und um die Abbildung einer Vielzahl von Artikeln und Varianten zu ermöglichen, ist ein teilhierarchisches System zu wählen.

Dadurch wird auch die Integration mit anderen Klassifikationssystemen möglich gemacht.

Überschlägige Vorüberlegungen47 gehen von einer gesamten Anzahl von etwa 2.500 bis 4.000 Klassen aus, um die komplexe Baustoffwelt komplett abbilden zu können.

Basierend auf dem üblichen Nutzerverhalten und den zu erwartenden Datenübertragungsmengen lässt sich ableiten, dass Strukturen nicht mehr als 10 Einträge pro Hierarchieebene besitzen sollen. Daraus ergibt sich eine Struktur mit idealerweise 4 Ebenen.

Weiters wurde bereits unter (4.1.5) festgestellt, dass eine Produktklassifikation zur detaillierten Beschreibung zwingend mit Eigenschaftsmerkmalen versehen sein muss (teilhierarchisches System).

Diese Eigenschaften können nun numerisch oder in Textform vorliegen, weiters kann es vorkommen, dass die Eigenschaften nur aus einer bestimmten Grund-

mengen ausgewählt werden sollen – gegebenenfalls aber mehrere Einträge gültig sein können.

Beispiel:
Ein Dämmstoff besitzt die Eigenschaften
- „Dicke“ – numerisch, frei wählbar
- „Brandklasse“ – als Text, Auswahlmöglichkeit F30, F60, F90
- „Baustoffzulassung“ – als Text, mehrere Angaben aus fixer Auswahlliste möglich (z.B. zugleich CE und ÖA)

Daraus ergibt sich, dass das projektierte System eine flexibel darstellbare Eigenschaftsleiste besitzen muss.

Eigenschaften sollen aber in verschiedenen Klassen wiederholt vorkommen können (d.h. die Eigenschaft „Dicke“ soll es nicht für mehrere Klassen jeweils extra geben, sondern jede Klasse deren Produkte eine „Dicke“ als relevanten Wert besitzen verweist auf dieselbe Eigenschaft)\(^48\)

Weiters besitzt jede Klasse unterschiedliche Eigenschaften. Während bei Dämmstoffen der Lambda-Wert ein wesentliches Kriterium ist, stellt bei Kanaleinlaufgittern die Durchflussmenge ein Hauptkriterium dar.

Die Klassifikationsstrukturen und Merkmalsleisten müssen so gestaltet sein, dass eine Abwärtskompatibilität zwischen den Versionen gegeben ist. Hierzu sind die Klassen doppelt zu nummerieren.

Die zweite Nummer ist eine eindeutige interne Identifikationsnummer, die unveränderlich und unlöschar ist. Dies ist auch die Nummer, auf die klassierte Artikel technisch verweisen. Dadurch ist sichergestellt, dass auch bei Änderungen der Klassifikationsstruktur keine Probleme in der Produktzuordnung und technischen Abwicklung entstehen.

Sollte also eine Klasse von einer Oberklasse in der Hierarchie in eine andere wandern, so wandern die zugehörigen Artikel mit. Bei Verwendung unterschiedli-

\(^48\) Dies ist ein datentechnisch bedeutsamer Vorteil gegenüber eCl@ss und vergleichbaren Systemen, da Datenredundanzen hintan gehalten werden.
cher Versionen der Klassenstruktur wird der jeweilige Artikel immer passend zur gerade verwendeten Struktur angezeigt.

4.2.2. Klassierungs vorgang

Gefordert ist ein zeitsparender und kostengünstiger Vorgang, der die bereits geleistete Vorarbeit der Baustoffindustrie bestmöglich nutzt.

Die Klassierung ist definiert als Zuordnung von Artikeln zu Produktklassen einerseits und der Merkmale zu den Artikeln andererseits.

Nachdem die Industrieartikel im offenen Industriedatenpool bereits mit (einigermaßen) vollständigen Detailinformationen vorliegen, kann auf diese umfangreichen Daten zugegriffen werden.

Statt nun die Klassifikationsinformationen und Merkmalswerte händisch zu erfassen, können die bestehenden Informationen per Verweis auf die vorhandenen Daten EDV-technisch übernommen werden.

Dadurch ist eine schnelle und kostengünstige Bearbeitung sichergestellt, welche eine rasche Umsetzung der Klassifikation in Österreich ermöglicht.

![Abb.: Klassierung über das Softwaresystem des offenen Industriedatenpools](image-url)
Industrie

stellt Produktkataloge (PDF, XLS,...) zur Verfügung.

diese beinhalten:
- Beschreibungen
- Bilder
- Preise
- Eigenschaften
- Produktart

kaum Klassifikations-
aufwand bei Industrie

Erfassung und
Harmonisierung

Beliebige Mappings

Ausgabe PREISDATEN

gemappt für:
- Pricat
- Excel
- Datanorm
- BmeCAT
- CSV, TXT
- u.s.w.

Ausgabe PRINT

gemappt für:
- Indiv. Katalogstruktur

Ausgabe HTML

gemappt für:
- e-Commerce
- DVD
- euroBau
- u.s.w.

Ausgabe klassifizierte
Stammdaten

gemappt für:
- STRABAG
- Auer
- Bau-SU
- e-commerce
- u.s.w.

Abb.: Visualisierung Datenfluß und Klassifikation im Industriedatenpool. Eigene Darstellung.
Der Ablauf:
Wie bereits bisher (siehe [handle2006]) stellt die Baustoffindustrie ihre Artikel- stammdaten und Produktbeschreibungen über den offenen Industriedatenpool zur Verfügung.49
Hiermit stehen die Ausgangsdaten EDV-verarbeitbar bereit. Die Klassierungssoftware übernimmt nun (anwendergesteuert) die Zuordnung der Produkte zu den geeigneten Klassen und (automatisiert) die physikalischen Eigenschaften als Merkmalswerte in die Datenbank.
Nach erfolgreicher Klassifikationsüberleitung können die Daten in verschiedenen Formaten, klassifiziert oder auch nicht, nach Wunsch ausgegeben werden.

4.2.3. Mapping50 verschiedener Klassifikationssysteme
Wie unter (4.1.3) dargestellt, ist auch die Verwendbarkeit als Integrationsplattform für verschiedene Warengruppenschlüssel eine wesentliche Anwendung der projektierten Produktklassifikation.
Diese Anwendung beinhaltet neben der Ausgabe klassifizierter Produktdaten nach verschiedenen Klassifikationsschlüsseln auch die über die Klassifikationen gesteuerte automatisierte Zuordnung von abstrakten und Realartikeln (etwa für die Preisfindung wie im Beispiel unter (4.1.4.e) dargestellt)
Um diese Anwendung zu ermöglichen, wäre es theoretisch erforderlich, dass für jeden Artikel seine Klassennummer und Eigenschaftswerte für jede der unterstützten Klassifikationsstrukturen erfasst würde.
Aus Sicht des Verwaltungsaufwandes eine indiskutable Vorgangsweise.

Klassifikationssysteme beschreiben Eigenschaften. Damit ist definiert, welche Eigenschaften ein Produkt besitzen muss, um in einer bestimmten Klasse in einer bestimmten Form definiert auffindbar sein zu können.
Üblicherweise gibt es eine Reihe von Produkten verschiedener Hersteller, welche die geforderten Eigenschaften für eine bestimmte Zuordnung besitzen.
Dieselben Produkte wären aufgrund ihrer Eigenschaftswerte auch einer alternativen Klassifikationsstruktur zuordnenbar. Dies muss jedoch, bei bereits einmalig sinnvoll klassifizierten Produkten nicht erneut geschehen.

49 Bezüglich Ablaufdiagramm des Datenwartungsprozesses siehe [Handle2006] Seite 34 ff
50 Mapping: Bezeichnung für den Vorgang, einen geeigneten Satz an Regeln zu erstellen, um Daten von einer Darstellungsform automatisiert in eine andere überzuleiten.
„FREECLASS“ besitzen muss, um in einer bestimmten Klasse des Zielsystems eingeordnet werden zu können.

Soweit das Zielsystem auch über Merkmalseigenschaften verfügt, kann auch die Relation zwischen den Merkmalen von „FREECLASS“ und dem Zielsystem definiert werden.

Nach dieser einmaligen Zuordnung können alle Produkte dieser Klasse automatisch auf das Zielsystem gemappt werden. Auch bei künftigen Erweiterungen um andere Produkte ist kein zusätzlicher Arbeitsaufwand mehr erforderlich, sondern können auch diese Produkte mittels der bereits festgelegten Mappingregeln auf die Zielklassifikationsstruktur gemappt werden.

Abb.: Mapping von FREECLASS auf AUER Eurostamm

Dadurch ist eine sehr effiziente Bearbeitung und Bereitstellung in verschiedenen Klassifikationssystemen sichergestellt, ebenso wie die Kompatibilität auch mit Anforderungen aus anderen Ländern.
4.2.4. Prozessbeschreibung Produktklassifikation
Einbindung der Fachkompetenz der Baustoffindustrie

Der Aufbau einer sinnvollen Klassifikationsstruktur samt den erforderlichen Merkmalen sowie die Klassierung von Produkten sind zeit- und arbeitsaufwendig, vor allem aber werden dafür eine Reihe von Kompetenzen benötigt:

- technische Fachkenntnis der Produkte und Anwendungen
- Fachkenntnis im Normenumfeld und Zulassungsrecht
- Organisatorische Kompetenz
- Kompetenz im Umgang mit einer Klassifikationssoftware

Ein gängiger Weg, sich beim Aufbau von anderen Klassifikationssystemen dieser Kompetenzen zu bedienen war (und ist in Deutschland nach wie vor) die Einbeziehung unabhängiger Fachleute insbesondere aus dem Universitäts- und Normungsumfeld.

Nun ist das Spektrum an Bauprodukten aber ein extrem breites, welches sich fachlich auch von höchst qualifizierten Personen nicht in der vollen Breite abdecken lässt.

Außerdem sind gerade die fachkompetenten Personen meist mehr als ausgelastet und stehen für eine zeitaufwendige Klassifikationsarbeit oft nur ungern zur Verfügung – was auch betriebswirtschaftlich nachvollziehbar ist.

Der von einigen Klassifikationsanbietern gewählte Ansatz, die Klassifikationsstruktur von universitären Fachleuten erstellen zu lassen, ist zwar grundsätzlich naheliegend, widerspricht aber der baubetrieblichen Praxis. Hunderte verschiedener fachbezogener Normen und eine enorme Vielfalt an gesetzlichen Rahmenbedingungen sowie mehrere 100.000 Artikel können von einem Fachleute-gremium nicht bewältigt werden.

Es ist nicht vorstellbar, dass branchenübergreifende Fachleute die Baustoffe einer bestimmten Produktgruppe annähernd so genau kennen wie die Mitarbeiter des jeweiligen Herstellers.

Aus diesem Grund sieht das Konzept die Einbeziehung der Baustoffe-zeuger in den Prozess als wesentlichen Kompetenzfaktor vor.

Damit verbunden ist jedoch auch eine gewisse Gefahr:

Hersteller denken immer auch vertriebsorientiert, sodass zu erwarten ist, dass bestimmte Hersteller die Gestaltungsfreiheit zu ihrem eigenen Vorteil auszunutzen versuchen.
Außerdem steht auch bei den Baustoffherstellern qualifizierte Arbeitszeit nur sehr beschränkt zur Verfügung.

Es gilt daher, einen Prozess zu finden, der die Kompetenz der Baustoffhersteller im Gestaltungs- und Klassierungsprozess bestmöglich nutzbar macht, ohne die Hersteller personell allzu sehr in Anspruch zu nehmen und ohne das projektierte Produktklassifikationssystem zur reinen Vertriebsunterstützung abgleiten zu lassen.

Abb.: Prozessbeschreibung mit Verantwortlichkeit: Produktklassifikation

Folgender Ablauf wurde gewählt:
- Aufbereitung der Produkt- und Artikelstammdaten
 - Dieser Prozesssteil folgt weiterhin den Vorgaben, die in [handle2006] Seite 34ff beschrieben wurden.
- Klassifikationsüberleitung
 - Mitarbeiter von inndata Datentechnik GmbH leiten die Produkte in die Standardklassifikation über und ergänzen diese nach bekannten Informationen, falls erforderlich.
- Prüfung
 - Mitarbeiter des Industriebetriebes prüfen anhand einer von inndata bereitgestellten Prüfliste die korrekte Zuordnung der Baustoffe und die korrekte Darstellung der Eigenschaftswerte. Sollten nach Ansicht der Industrie zusätzliche Eigenschaftswerte oder Korrekturen zur einwandfreien Beschreibung des Produktes erforderlich sein, wird dies bekannt gegeben.
 - Sofern sich die Wünsche mehrerer Industrien zur selben Produktklasse widersprechen, wird die Definition der endgültigen Klassifikation durch den Arbeitskreis Baustoffklassifikation als Fachgremium entschieden.
- Nachbearbeitung
 o Die beschlossenen Änderungen und Korrekturen werden von Fa. Inndata nachgepflegt.
- Freigabe
 o Der betroffene Industriebetrieb ist für die endgültige Freigabe zur Nutzung für seinen Katalog verantwortlich.
- Verwendung
 o Nun können Planer, Gewerbebetriebe, Handel und auch der Erzeuger selbst zur Nutzung nach (4.1.4) auf die Daten zugreifen. Der Zugriff kann über www.industriedatenpool.com (zum Download) oder www.eurobau.com (Online-Anwendung für Planer) erfolgen.

4.2.5. Kontinuierlicher Verbesserungsprozess als Basis der Gestaltung

Der Start „vom grünen Tisch“ und die Notwendigkeit einer raschen Umsetzung des Projektes Produktklassifikation führt in einem wesentlichen Teilproblemfeld, der Klassifikationsstruktur, zu zwangsläufig unvollständigen und nicht optimalen Zwischenständen.

Während andere Teilbereiche des Projektes wie die dahinterliegende Anwendungssoftware als „Black Box“ in sich fertiggestellt werden können, unterliegt die Produktklassifikationsstruktur zwangsläufig einem dauernden Veränderungsprozess, der aufgrund der laufenden Produktinnovationen im Baustoffsektor auch nicht endlich ist.

51 Black Box: EDV-Begriff für in sich gekapselte Teillösungen mit definierten Schnittstellen, auf welche andere Komponenten über jene Schnittstellen zugreifen können, ohne sich um die internen Abläufe zu kümmern. Ursprünglich bereits in der prozeduralen Anwendungsentwicklung enthalten, in der objektorientierten Programmierung optimiert. Der Begriff wird synonym aber auch für in sich gekapselte Teillösungen oder Komponenten anderer Art verwendet.

Abb.: Deming Cycle, angepasst aus: Unterlagen Univ. Prof. Dr. Augustin, Feb 2006 S.42
Dieser Veränderungsprozess soll zur Erreichung eines hohen Qualitätsniveaus in Form eines kontinuierlichen Verbesserungsprozesses („KAIZEN“, „KVP“) umgesetzt werden.

Hierzu ist einerseits die technische Voraussetzung zu schaffen (siehe 4.2.1), um die laufende Veränderung ohne Probleme im Versionsmanagement und der Abwärtskompatibilität umsetzen zu können.

Andererseits sind auch organisatorische Vorkehrungen zu treffen.

Entsprechend dem Deming-Cycle52 sind folgende Phasen und Maßnahmen zu definieren:

- **Plan**
 - Probleme darstellen und Maßnahmen planen
 - Im Rahmen der regelmäßigen Arbeitskreise und der Prüfläufe mit der Industrie werden problematische Bereiche der Produktklassifikationsstruktur ermittelt und die Art und Weise der Verbesserung gemeinsam festgelegt.
 - Hierbei werden ergänzend zur Meinung der betroffenen Industrie auch die Meinungen der Marktbegleiter des jeweiligen Produktsortimentes sowie der anderen Marktteilnehmer eingeholt und in den Verbesserungsplan eingearbeitet.

- **Do**
 - Umsetzen der ermittelten Lösungsmöglichkeit
 - Die ermittelten Verbesserungsvorschläge werden von inndata in die Produktklassifikation eingebaut und eine neue Prüfliste, ein neuer Klassifikationsstand zur Abnahme vorbereitet.

- **Check**
 - Prüfen der umgesetzten Lösung
 - Die aktualisierten Strukturen und Daten werden neuerlich auf ihre Anwendungstauglichkeit überprüft und gegebenenfalls nachgebessert

- **Act**
 - Agieren, Erkenntnis zum neuen Standard machen und den Standard absichern bzw., wenn die Lösung keinen Fortschritt gebracht hat, zurück zur Planung

52 Deming-Cycle: auch PDCA-Rad oder KAIZEN Rad genannt
Dieser Prozess wird in einer Form definiert, welche es ermöglicht maximalen Nutzen aus der spezialisierten Fachkompetenz der jeweiligen Mitarbeiter der Baustoffhersteller zu ziehen, ohne diese zeitlich zu sehr zu belasten.

Der Prozess wurde testweise bereits mit einigen Baustoffindustrien (z.B. Ardex, Gutjahr, Steinbacher, Swisspor) abgewickelt und hat sich bislang auch insofern bewährt, als keiner dieser Hersteller mehr als einen Arbeitstag für die komplette Abwicklung investieren musste.

5. Realisierung

Obwohl die eigentliche Realisierung des Projektes nicht mehr Teil der Master Thesis ist, sondern vom Unternehmen des Einreichers, Fa. Inndata, umgesetzt werden soll, hier zur Vollständigkeit eine Zusammenfassung der inzwischen (September 2007) bereits im Wesentlichen erfolgten Umsetzung:

5.1. Technische Umsetzung

Aufgrund der bereits seit knapp 10 Jahren im offenen Industriedatenpool bewährten technologischen Basis kommt auch bei diesem Projekt eine Hardware- und Netzwerkarchitektur entsprechend Anhang 2 zum Einsatz.

Die Anwendungen basieren auf dem relationalen Datenbanksystem MS SQL-Server im Backend und einer Reihe von Applikationsservern unter dot.net 2.0 und IIS 6.0 im Frontend, es handelt sich also ausschließlich um Online-Applikationen mit zentralisierter Datenhaltung.

Dies gilt jedoch nur für die von Fa. Inndata selbst bereitgestellten Anwendungen, Software von Drittherstellern, welche die Produktklassifikation und die klassifizierten Daten nutzt, kann sich unterschiedlichster Architekturen bedienen.

Die gesamte Softwareentwicklung und Datenbankstruktur entsteht direkt im Rechenzentrum der Fa. Inndata, dadurch ist rasche Reaktion auf geänderte Anforderungen (siehe (4.2.5)) gewährleistet.

5.2. Gestaltung der inhaltlichen Struktur

Die inhaltliche Struktur des Klassifikationssystems wurde nach dem Ablauf der Anwendung am Bau gestaltet und besitzt 10 Hauptklassen und derzeit (September 2007) etwa 1.400 Unterklassen.

In die Gestaltung der Struktur fließt die Kompetenz der einzelnen Marktteilnehmer seit Beginn der Arbeiten massiv mit ein, bzw. konnte ursprünglich auf intern bereits vorhandene Strukturen aus der bisherigen Tätigkeit im Rahmen des offenen Industriedatenpools zurückgegriffen werden.
Es wird generell versucht, mit einer möglichst überschaubaren Anzahl von Basisklassen und Basismerkmalen zu arbeiten, aus deren Kombinationen sich dann die entsprechenden Produktbeschreibungen ableiten lassen.

Der Aufbau der Struktur erfolgt über die zentrale Internetanwendung des offenen Industriedatenpools und ermöglicht die laufende Überarbeitung ohne Beeinträchtigung der funktionalen Zusammenarbeit von Datenstämmen unterschiedlicher Versionsstände.

Abb.: Klassendefinition im offenen Industriedatenpool
5.3. Meinungsbildung bei den Marktteilnehmern

Wie in (2.1.5) dargestellt, ist die Meinung der verschiedenen Marktteilnehmer zur Frage einer durchgängigen Produktklassifikation nicht uneingeschränkt positiv. Neben einer Anzahl von wirtschaftlich motivierten Bedenken besteht auch eine gewisse Sorge, in ein nicht flächendeckend umsetzbares System zu investieren.

Hier ist der Anbieter des Klassifikationssystems gefordert, entsprechend Meinungsbildung zu betreiben. Dies kann auf verschiedene Weise erfolgen:

- Integration der Verbände
 - Verbände wie der Zentralverband der Bauprodukteerzeuger, verschiedene Baustoffhandelsverbände, die Bundesinnung Baugewerbe etc. sollen zur aktiven Teilnahme an den Klassifikationsarbeiten motiviert werden.

- Zusammenarbeit mit Softwarehäusern

- Aufklärungsarbeit
 - Die Vorteile sind entsprechend darzustellen und die nachteilig angenommenen Fragen zu entkräften.

- Beweis der flächendeckenden Umsetzbarkeit
 - Wesentlich sind rasche Erfolge in der Umsetzung, um die Marktteilnehmer von einer in absehbarer Zeit erfolgenden Flächendeckung zu überzeugen. Hier sind Netzwerkeffekte möglich, die dem Projekt nützen, ihm aber auch wesentlich schaden können.

- Arbeitskreis Baustoffklassifikation
 - Der Arbeitskreis besteht seit April 2007 und ist laufend mit führenden Personen aus allen wesentlichen Interessengruppen des Bauwesens besetzt. Hier werden nicht nur weitere Entwicklungen besprochen, sondern dieser Arbeitskreis ist auch wesentlich für die Glaubwürdigkeit der Produktklassifikation und zur Meinungsbildung.

5.4. Organisatorische und wirtschaftliche Umsetzung

Es bedarf einer kosteneffizienten und reaktionsschnellen Basisorganisation, um dieses Projekt rasch umsetzen zu können.

Nachdem die Bereitschaft der Marktteilnehmer, größere Summen in die Umsetzung zu investieren nur beschränkt gegeben ist, muss neben der Infrastruktur und technischen Lösung auch die Organisation des Betreibers entsprechend effizient gestaltet werden.

Eine Teilung der Kostenträgerschaft ist somit der Schlüssel zu einer raschen (und zwingend erforderlichen) Flächendeckung.

Die Kalkulation muss daher so aufgebaut sein, dass sie die Verbreitung des Systems nicht behindert und gleichzeitig die Existenz des betreibenden Unternehmens wie auch die laufende Weiterentwicklung auf Dauer sichergestellt werden können.

Anmerkung: Kostenkalkulation und Organisationsplan sind im Unternehmen vorhanden, werden hier aber aus Platzgründen nicht wiedergegeben.

Weitere organisatorische Aufgaben bestehen unter anderem im Bereich der Vertragsgestaltung und der Vertriebsorganisation.

Wesentlich ist die Rolle der Softwarehäuser. Diesen erschließt sich durch die neue Produktklassifikation die Möglichkeit, ihre Kunden mit zusätzlichen wertvollen Funktionen zu versorgen und dafür Ertragsquellen zu erschließen.

Gleichzeitig ist aber auch die Weiterentwicklung innerhalb dieser Softwarehäuser gefordert, die Produktklassifikation entsprechend sinnvoll in die Software zu integrieren.

Aus den dafür erforderlichen Entwicklungskosten ergibt sich die Notwendigkeit, diese Softwarehäuser von der Nachhaltigkeit der neuen Entwicklungen zu überzeugen und diese auch entsprechend über die neuen Möglichkeiten und die Vorgangsweise zur Nutzung zu informieren.

54 Flächendeckung, synonym zu sehen mit optimaler Nutzung der Netzwerkeffekte durch Teilnahme möglichst vieler Partner
5.5. Schulung und Weiterentwicklung

Die Verwendung von Produktklassifikationssystemen stellt aber derzeit für die meisten Marktteilnehmer noch Neuland dar.

Es sind daher entsprechendes Schulungsmaterial und ausreichend Schulungsmaßnahmen vorzusehen. Dies ist dreistufig zu sehen.

Einerseits sind seitens des Systembetreibers entsprechende Maßnahmen zu setzen, andererseits haben auch die Unternehmen im Bausektor hausintern einen entsprechenden Schulungsaufwand.

Außerdem sind auch die Softwarehäuser gefordert, ihre Softwaresysteme nicht nur an die neuen Möglichkeiten anzupassen, sondern die Anwender auch entsprechend zu instruieren.

Es hat sich im Laufe der Gespräche herausgestellt, dass es noch eine Reihe nicht erschlossener Anwendungsfelder gibt, welche durch eine flächendeckende Produktklassifikation erstmals bedient werden können.

Daraus ergibt sich, neben dem wirtschaftlichen Potential, auch die Anforderung die Anwendungen laufend intensiv weiter zu entwickeln.

6. Allgemeingültigkeit

6.1. Nutzung der gewonnenen Erkenntnisse in benachbarten Wirtschaftsräumen

Österreichs Baustoffindustrie, Bauindustrie und in geringerem Maß auch der österreichische Baustoffhandel haben die letzten Jahre intensiv genutzt, um die durch
die EU-Erweiterung hinzugekommenen Länder im Osten als neue Märkte zu nutzen. Einen Überblick über die überregionalen Aktivitäten der wichtigsten Partner der Fa. Inndata gibt Anhang 3.

Hier ist festzustellen, dass zwar bislang noch die Tschechische Republik eine besonders ausgeprägte Bedeutung besitzt, aber auch die anderen Länder zunehmend an Bedeutung als Zielmarkt für die heimischen Betriebe gewinnen.

Insbesondere Rumänien dürfte in kurzer Zeit aufgrund der derzeit etwa 30 Milliarden Euro verfügbarer EU-Zielfördergebiets-Mittel einen wesentlichen Stellenwert erlangen.

Welche Kriterien muss nun ein Produktklassifikationssystem erfüllen, um in diesen Ländern einsetzbar zu sein?

- Sämtliche für Österreich erforderlichen Kriterien

sowie zusätzlich

- sprachliche Anpassbarkeit

 Das System muss mit geringem Aufwand (Übersetzung der Begriffe) auf die Zielsprache anpassbar sein.
 Aufgrund der vielfach weitgehend übereinstimmenden Lieferprogramme muss auch gewährleistet sein, dass bereits geleistete Klassierungsarbeit auch für das Zielland übernommen werden kann.
 Das heißt, die Klassierung muss aufgrund der Artikelnummern automatisiert auf die Kataloge des Ziellandes übertragbar sein.

- Fremde Zeichensätze

 Das System muss mit fremdsprachlichen Zeichensätzen (z.B. Kyrillisch) umgehen können

- Anpassbarkeit an die lokalen Baustoff-Zulassungsvoraussetzungen und Normen

 Das Klassifikationssystem muss ausreichend flexibel sein, um regional unterschiedliche rechtliche Rahmenbedingungen abbilden zu können.

55 Ehemalige Comecon Länder, vor allem Tschechien, Slowakei, Ungarn, Rumänien und Slowenien, aber auch Polen und Bulgarien. Die ehemalige DDR wird von Deutschland aus betreut und entzieht sich damit der österr. Industrie weitgehend.
56 Quelle: Österreichische Außenhandelsstelle in Bukarest, Handelsdelegierter Ing. Mag. Friedl
57 Entsprecht der Forderung an ein System für den österreichischen Markt und damit gleichzeitig einem Ausschlusskriterium, warum die diesbezüglich reichlich unflexiblen deutschen Klassifikationssysteme für Österreich nicht geeignet sind, siehe 3.2
- Guter organisatorischer Zugang zu den Marktteilnehmern des Ziellandes

6.2. Übertragbarkeit auf andere Branchen

Um die hier beschriebene Struktur optimal zur Anwendung bringen zu können muss die Zielbranche jedoch in einigen Punkten eine gewisse Ähnlichkeit zur Baubranche aufweisen:

- Großhandelsstruktur
- große Zahl gewerblicher Endanwender
- unabhängige Planungs- und Ausschreibungsbüros
- große Zahl eindeutig beschreibbarer, normierbarer Artikel
- große Zahl unterschiedlicher Anbieter mit überschneidenden Sortimenten
- regionale Unterschiede in Normung, Produktverwendung und gesetzlichen Rahmenbedingungen
- entsprechende EDV-Durchdringung

So diese Elemente in einer Zielbranche fehlen, ist möglicherweise ein anderes Klassifikationssystem besser geeignet oder die Frage nach der Sinnhaftigkeit einer Klassifikationsstruktur generell zu stellen.
7. Zusammenfassung, Ausblick

Im Rahmen dieser Master Thesis sollte der optimale Weg zur Umsetzung einer durchgängigen Produktklassifikation für Baustoffe aufgezeigt werden. Im Rahmen der umfangreichen Recherchen wurde überraschenderweise deutlich, dass die verschiedenen bereits existierenden Klassifikationssysteme für den Einsatz in Österreichs Bauwirtschaft nicht optimal geeignet sind.

Es wurde deshalb die Etablierung eines neu gestalteten, auf österreichische Bedürfnisse zugeschnittenen und trotzdem auch in den EU-Erweiterungsländern mittelfristig einsetzbaren Produktklassifikationssystems vorgeschlagen. Dieses System wurde in den grundlegenden Eigenschaften beschrieben und die Sinnhaftigkeit der Umsetzung und Anwendung nachgewiesen.

Abb.: Download klassifizierter Baustoffdaten im BMEcat Standardformat von www.industriedatenpool.com
8. Quellenverzeichnis

8.1. Klassifikation allgemein
 technische und wissenschaftliche Grundlagen

[Eversberg2003] Wie katalogisiert man ein Buch?
Bernhard Eversberg, UB Braunschweig, Sommer 2003
entnommen aus http://www.allegro-c.de/regeln/rak-einf.htm und
http://www.allegro-c.de/regeln/skeptik.htm im September 2007

[ETM2007] ETIM Informationsbroschüre
am 13.07.2007

[gpa2005] assigning keywords to digital repisitories,
Verbundzentrale des GBV (VZG), Göttingen
Entnommen aus http://www.gbv.de/dms/ilmenau/abs/51427526Xkaest.txt
am 13.09.2007

[handle1998] „Programmlogik zur Realisierung eines branchenunabhängigen, on-
line aktualisierbaren Online-Produktkataloges, mit Rückmeldung, für unbeschränkt
viele Anbieter, wobei die Produkte per Volltextsuche auffindbar sind“
Projektantrag beim österreichischen Forschungsförderungsfonds,

[handle_patent1998] „Software zur natürlichsprachlichen Volltextsuche“
Antrag zum Gebrauchsmusterschutz beim österreichischen Patentamt

[handle2000] Datenbanksysteme
Skriptum für den Unterricht an der HTL Innsbruck

[ICD2004] Internationale Klassifikation psychischer Störungen. ICD-10 Kapitel V
(F). Klinisch-diagnostische Leitlinien
Horst Dilling, Werner Mombour, und Martin H. Schmidt
ISBN 3456841248, Dezember 2004

[Manz2005] Ein Bleistift ist ein Bleistift – warum wir zwingend eine Referenzierung
von Produktklassifikationen brauchen
8.2. Standardisierung im e-Business allgemein

[BME2005] Spezifikation BMEcat® 2005 final draft
Volker Schmitz und Co-Autoren
Universität Duisburg Essen, 2005

[BuildIT2006] Fachvortrag zur Build IT Berlin, 23.06.2006
Standardisierung im e-Business
Ministerialrat Dr. Rolf Hochreiter
BMWT Berlin

[CCG2007] die CCG Standard Warenklassifikation
Centrale für Coorganisation GmbH (CCG), Köln, 2007

ECR Status – Ergebnisse für Handel und Industrie
Centrale für Coorganisation, Köln, Jänner 2003

[fData2007] Artikelkatalog Bau – Pilotprojekt
Dr. habil Klaus Schiller, f:Data GmbH Weimar, 2007

[FRA2002] e-Business Standards, Verbreitung und Akzeptanz
Boris Otto und Co-Autoren, Fraunhofer Institut

[hagebau2003] EDIFACT Guideline für den Rechnungsdatenaustausch
INVOIC D.96.A
M. Mautz, hagebau Datendienst, Soltau, 09.12.2003

[Handle2006] Verbesserungspotential des betrieblichen Beschaffungsprozesses im Bauwesen durch Nutzung moderner IT und Kommunikationsstrukturen Abschlussarbeit GM
Otto Handle, Innsbruck, September 2006

[hbm2004] Strategien für Produktordnungssystemen stabil und doch flexibel
Havard Businessmanager, 27.01.2004, Nr. 2, Seite 37

[heinze2005] PRICAT – Artikelstammdaten und elektronisches Bestellwesen im Fachhandel der Baubranche
Heinze GmbH, Soltau, 05.01.2005

Stephan Abers, Vorstand jCatalog Software AG, Dortmund

[MM2007] Produktklassifikationen über Unternehmensgrenzen werden wichtiger
MM MaschinenMarkt Nr. 14 vom 02.04.2007 Seite 68

[openTrans2001] Spezifikation openTRANS
Version V1.0
Oliver Klekar und Koautoren
Fraunhofer IAO
Volker Schmitz, Universität Essen BKI
Stuttgart/Essen 2001

[PFC2005] Produktklassifikationen, Status und Trends
Vortrag von Dipl. Inf. Helmut Beckmann am 16. März 2005 zur Mitgliederversammlung des profiCl@ss International e.V. in Frankfurt,
8.3. Infos zu themenbezogenen Lösungsansätzen

Präsentation zum Arbeitskreis Baustoffklassifikation, 18.04.2007
Dr. Schuchlenz, DI Entzian, Bmstr. Ing. Handle
Wien, 18.04.2007

[BuildIT2006/2] Fachvortrag zur Build IT Berlin, 23.06.2006
eClass für den Mittelstand
Dipl. Ing. Rolf Scharmann

[DIN2006] DIN Merkmalslexikon

[eClass2007] eCl@ss - Aufbau der Datensatz- und Klassenstruktur
www.eClass.de, 2007

[eClass2007/2] Integration von bau:class in eCl@ss
Ein Standard für die Produktklassifikation in der Baubranche eCl@ss e.V., zuletzt entnommen am 16.09.2007 aus
http://www.eclasse.de/index.html?no=intro&svt=1&navid=3706

[fData2006] bau:class
Klassifizierungsinitiative der Baubranche
Dipl. Ing. Klaus Entzian
f:Data GmbH, Weimar, 2006

[fData2006/2] Benutzerhandbuch bau:class Klassifikationseditor
f:Data GmbH, Weimar, Februar 2006
8.4. Gesetzliche und wirtschaftliche Rahmenbedingungen

[Bvg2000] Bundesvergabegesetz
Jahrbuch der deutschen Wirtschaft,
Oliver Lorenz (Herausgeber)
zuletzt entnommen am 15.09.2007 aus

europäische Klassifizierung des Feuerwiderstandes

[FMS2007] Informationsbroschüre CE Kennzeichnung
Teil 1: Allgemeines
Ing. J. Zoder, Fachverband Maschinen- und Metallwaren Industrie
Wien, Juli 2007, zuletzt entnommen am 17.09.2007 aus
http://www.fmmi.at/content/file/teil1_allgemein.pdf

[Hinterhuber2004] strategische Unternehmensführung
Teil II Strategisches Handeln
Dr. rer.oec. Dipl.-Ing. Hans H. Hinterhuber
Innsbruck, 2004

[ÖA2007] Baustoffliste ÖA
Verordnung des Österreichischen Institutes für Bautechnik (OIB)
vom 08. Jänner 2007 über die Baustoffliste ÖA
Dipl. Ing. Dr. Rainer Mikulits, Wien, 08. Jänner 2007

[ON2006] ON Zertifizierung CE für Bauprodukte,
Wien 2006, entnommen zuletzt am 17.09.2007 aus
http://www.on-norm.at/publish/fileadmin/user_upload/dokumente/Broschueren/
ON_allgemein/Zertifizierung/ON-CERT-03_CE_fuer_Bauprodukte.pdf

Ergebnisse der europäischen Erhebung über e-Commerce 2004/2005 herausgegeben von der Statistik Austria
Wien, 2005, zuletzt entnommen am 15.09.2007 aus
http://www.statistik.at/web_de/Redirect/index.htm?dDocName=007223

[pte2004] Analyse des Produktdatenmarktes in Österreich, recherchiert vom Geschäftsführer von Pressetext Austria, Herrn Mag. Seywald,

Kommerzialrat Dkfm Manfred Winkler in
www.bauspezi.at/presse3.html vom 10.08.2006
Anhang 1: Übereinstimmungserklärung Baustoffliste ÖA

Übereinstimmungserklärung des Hersteller nach Baustoffliste ÖA

Entnommen aus [ÖA2007] Seite 52

OIB-095.1-001/07

Anlage D Muster für die Übereinstimmungserklärung des Herstellers

------------------------------------ ------------------------------------
[Name und Anschrift des Herstellers] [Aktenzahl]
------------------------------------ ------------------------------------

ÜBEREINSTIMMUNGSERklärung
Nr.: 1 H-

Der Hersteller [Name und Anschrift des Herstellers oder seines bevollmächtigten Vertreters] bestätigt ge-
mäß § [Art. 6 Abs. 1 der Vereinbarung gemäß Art. 15a B-VG über die Regelung der Verwendbarkeit von Bauprodukten (Verein-
barung) entsprechender § der geltenden landesrechtlichen Bestimmungen], dass das (die) Bauprodukt(e)

------------------------------------ ------------------------------------
[Bezeichnung des(r) Bauprodukt(e) und ggf. sonstige Angaben]
------------------------------------ ------------------------------------

des(r) Herstellwerke(s)

------------------------------------ ------------------------------------
[Name und Anschrift des(r) Herstellungwerke(s)]
------------------------------------ ------------------------------------

den Bestimmungen des(r) in der Baustoffliste ÖA, Ausgabe, festgelegten Regelwerk(es/e)

[Bezeichnung des(r) einschlägigen Regelwerke(s) mit Ausgabedatum nach Spalte 3 und 4 der Baustoffliste ÖA und der allgemeinen zuge-
hörigen Anhänge]

entspricht/gleichwertig ist.

Das (Die) Bauprodukt(e) unterliegt (unterliegen) einer werkseigenen Produktionskontrolle und

☐ einer Erstprüfung 1 durch

[Name und Anschrift der nach landesgesetzlichen Bestimmungen akkreditierten Prüfstelle]

☐ einer Fremdüberwachung 2 durch

[Name und Anschrift der nach landesgesetzlichen Bestimmungen akkreditierten Überwachungsstelle]

Nummer des Überwachungsvertrages: [Angabe der Nummer]

Das (die) oben angeführte(n) Bauprodukt(e) ist (sind) gemäß § [Art. 2 Abs. 2 der Vereinbarung entsprechen-
der § der geltenden landesrechtlichen Bestimmungen] verwendbar und der Hersteller ist somit durch diese Erklä-

------------------------------------ ------------------------------------
[Name und Anschrift des(r) Herstellungwerke(s)]
------------------------------------ ------------------------------------

rung berechtigt, das (die) Bauprodukt(e) mit dem Einbauzeichnen entsprechend § [Art. 10 Abs. 3 der

Vereinbarung entsprechender § der geltenden landesrechtlichen Bestimmungen] zu kennzeichnen.

Die wesentlichen Produktkennwerte sind im Anhang zu dieser Übereinstimmungserklärung darge-

------------------------------------ ------------------------------------
[Ort und Datum] [Name, Funktion und Unterschrift des Zeichnungsberechtigten]
------------------------------------ ------------------------------------

ANHANG ZU ÜBEREINSTIMMUNGSERklärung Nr.: H-

1 identisch mit der im Einbauzeichnen und am Herstellungsort verwendenden Buchstabenzahlenkombination
1 Zutreffendes ist anzukreuzen.
Anhang 2: Technische Infrastruktur

Abb.: Technische Netzwerkstruktur indata Rechenzentrum Innsbruck
<table>
<thead>
<tr>
<th>Firma ACO Passau GmbH</th>
<th>PLZ/ Ort</th>
<th>WEB</th>
<th>AT</th>
<th>CH</th>
<th>IT</th>
<th>FR</th>
<th>CH</th>
<th>SK</th>
<th>HU</th>
<th>RO</th>
<th>PL</th>
<th>SL</th>
<th>HR</th>
<th>BG</th>
<th>RUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firma ARBEK Grassfot GmbH</td>
<td>2502</td>
<td>www.arbek-grassfot.at</td>
<td>1</td>
</tr>
<tr>
<td>Firma Averhoffs-Nagl GmbH</td>
<td>4630</td>
<td>www.av-hoff-nagl.at</td>
<td>1</td>
</tr>
<tr>
<td>Firma Baulotte Leit-Weih GmbH</td>
<td>3670</td>
<td>www.baulotte-leit.at</td>
<td>1</td>
</tr>
<tr>
<td>Firma Bieneck & Comp. GesmbH</td>
<td>9230</td>
<td>www.bieneck-og.com</td>
<td>1</td>
</tr>
<tr>
<td>Firma EG-Oberpfennig GmbH & Co KG</td>
<td>4650</td>
<td>www.eg-oberpfennig.at</td>
<td>1</td>
</tr>
<tr>
<td>Firma Diener-Duckscheidt GmbH</td>
<td>2521</td>
<td>www.dieners-aalst.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Eisenbahn-Kattegat GmbH</td>
<td>2151</td>
<td>www.eisenbahn-kattegat.com</td>
<td>1</td>
</tr>
<tr>
<td>Firma Hausten GmbH & Co KG</td>
<td>7642</td>
<td>www.hausten.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Kiehl Vertriebs GmbH</td>
<td>3140</td>
<td>www.kiehl-home.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Knaggs GmbH</td>
<td>1990</td>
<td>www.knaggs.com</td>
<td>1</td>
</tr>
<tr>
<td>Firma Agrotron GmbH</td>
<td>3950</td>
<td>www.agrotron.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Lafarge Pachinger GmbH</td>
<td>1061</td>
<td>www.lafarge.at</td>
<td>1</td>
</tr>
<tr>
<td>Firma Lias Österreich GesmbH</td>
<td>9919</td>
<td>www.fahrrad.at</td>
<td>1</td>
</tr>
<tr>
<td>Firma MEGA Bauverstärkungs GmbH</td>
<td>5182</td>
<td>www.mega.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Maris Holz- und Metallindustrie GmbH</td>
<td>9440</td>
<td>Oberkehl am Neckar</td>
<td>1</td>
</tr>
<tr>
<td>Firma META A-Bau GmbH</td>
<td>2555</td>
<td>www.meta-bau.com</td>
<td>1</td>
</tr>
<tr>
<td>Firma Fink GmbH</td>
<td>1230</td>
<td>www.fink.at</td>
<td>1</td>
</tr>
<tr>
<td>Firma REHAU GmbH</td>
<td>2530</td>
<td>www.rehaus.at</td>
<td>1</td>
</tr>
<tr>
<td>Firma Kiehl-Weizler GmbH</td>
<td>4510</td>
<td>www.kiehl-ge.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Knaggs GmbH</td>
<td>3900</td>
<td>www.knaggs.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Kiehl-Weizler GmbH</td>
<td>4510</td>
<td>www.kiehl-ge.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Kiehl-Weizler GmbH</td>
<td>4510</td>
<td>www.kiehl-ge.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Knaggs GmbH</td>
<td>3900</td>
<td>www.knaggs.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Kiehl-Weizler GmbH</td>
<td>4510</td>
<td>www.kiehl-ge.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Kiehl-Weizler GmbH</td>
<td>4510</td>
<td>www.kiehl-ge.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Knaggs GmbH</td>
<td>3900</td>
<td>www.knaggs.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Kiehl-Weizler GmbH</td>
<td>4510</td>
<td>www.kiehl-ge.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Kiehl-Weizler GmbH</td>
<td>4510</td>
<td>www.kiehl-ge.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Knaggs GmbH</td>
<td>3900</td>
<td>www.knaggs.de</td>
<td>1</td>
</tr>
<tr>
<td>Firma Kiehl-Weizler GmbH</td>
<td>4510</td>
<td>www.kiehl-ge.de</td>
<td>1</td>
</tr>
</tbody>
</table>

Gesamt Industrien vom 37 39 33 31 29 27 25 24 23 22 21 19 17
Anhang 4: Arbeitskreis Baustoffklassifikation

Im Rahmen der Master Thesis konnte auch auf die Ergebnisse der von der Unternehmung des Einreichenden gemeinsam mit STRABAG durchgeführten Arbeitskreise zum Thema Baustoffklassifikation in Österreich zurückgegriffen werden.

Teilnehmende Unternehmen der Arbeitskreise Baustoffklassifikation im Zeitraum Jänner bis September 2007:

- A Sochor & Co GmbH
- AFS GmbH
- Allgemeine Baugesellschaft A.Porr AG
- Alpine Mayreder Bau GmbH
- ARDEX Baustoff GmbH
- Auer - die Bausoftware GmbH
- Bau Software Unternehmen GmbH (BAU-SU)
- Bundesinnung Baugewerbe und VIBÖ
- CBergmann KG
- Dach und Wand
- f:data GmbH (bau:class)
- Franz Fetter (ÖBAU Fetter)
- Kräftner IT
- ÖBAU Nadlinger
- Pramer Ges.m.b.H
- Quester Baustoffhandel GmbH
- Steinbacher Dämmstoff
- STRABAG AG
- WKO Fachverband Stein und Keramik
- WKO Geschäftsstelle Bau - techn. Betriebswirtschaft
- Würth Hochenburger GmbH
- Zentralverband der industriellen Bauproduktehersteller
Anhang 5: Expertengespräche und e-Mail Kommunikation

Im Rahmen der Recherche und Vorbereitungsarbeiten für diese Master Thesis und die reale Umsetzung der Ergebnisse im Rahmen der Unternehmenstätigkeit wurden diverse Expertengespräche geführt.

Über den Inhalt dieser Expertengespräche wurde auch umfangreicher e-Mail-Verkehr geführt.

Wegen der wettbewerblichen Brisanz dieser Mails und dem daraus resultierenden Diskretionsbedürfnis sind diese in der Master Thesis nicht abgedruckt. Sie wurden dem beurteilenden Professor aber vorgelegt und können bei Bedarf beim Einreicher der Master Thesis eingesehen werden.